Semin Respir Crit Care Med 2015; 36(01): 136-153
DOI: 10.1055/s-0034-1398490
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Applying Pharmacokinetic/Pharmacodynamic Principles in Critically Ill Patients: Optimizing Efficacy and Reducing Resistance Development

Mohd H. Abdul-Aziz
1   Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Queensland, Australia
,
Jeffrey Lipman
1   Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Queensland, Australia
2   Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
,
Johan W. Mouton
3   Department of Medical Microbiology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
4   Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
,
William W. Hope
5   Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
,
Jason A. Roberts
1   Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Queensland, Australia
2   Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
5   Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
02 February 2015 (online)

Abstract

The recent surge in multidrug-resistant pathogens combined with the diminishing antibiotic pipeline has created a growing need to optimize the use of our existing antibiotic armamentarium, particularly in the management of intensive care unit (ICU) patients. Optimal and timely pharmacokinetic/pharmacodynamic (PK/PD) target attainment has been associated with an increased likelihood of clinical and microbiological success in critically ill patients. Emerging data, mostly from in vitro and in vivo studies, suggest that optimization of antibiotic therapy should not only aim to maximize clinical outcomes but also to include the suppression of resistance. The development of antibiotic dosing regimens that adheres to the PK/PD principles may prolong the clinical lifespan of our existing antibiotics by minimizing the emergence of resistance. This article summarizes the relevance of PK/PD characteristics of different antibiotic classes on the development of antibiotic resistance. On the basis of the available data, we propose dosing recommendations that can be adopted in the clinical setting, to maximize therapeutic success and limit the emergence of resistance in the ICU.

 
  • References

  • 1 Vincent JL, Rello J, Marshall J , et al; EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009; 302 (21) 2323-2329
  • 2 Vincent JL, Sakr Y, Sprung CL , et al; Sepsis Occurrence in Acutely Ill Patients Investigators. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006; 34 (2) 344-353
  • 3 Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA 2014; 311 (13) 1308-1316
  • 4 Stevenson EK, Rubenstein AR, Radin GT, Wiener RS, Walkey AJ. Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis. Crit Care Med 2014; 42 (3) 625-631
  • 5 ARISE; ANZICS APD Management Committee. The outcome of patients with sepsis and septic shock presenting to emergency departments in Australia and New Zealand. Crit Care Resusc 2007; 9 (1) 8-18
  • 6 Dellinger RP, Levy MM, Rhodes A , et al; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013; 41 (2) 580-637
  • 7 Coopersmith CM, Wunsch H, Fink MP , et al. A comparison of critical care research funding and the financial burden of critical illness in the United States. Crit Care Med 2012; 40 (4) 1072-1079
  • 8 Ranieri VM, Thompson BT, Barie PS , et al; PROWESS-SHOCK Study Group. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med 2012; 366 (22) 2055-2064
  • 9 Warren BL, Eid A, Singer P , et al; KyberSept Trial Study Group. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 2001; 286 (15) 1869-1878
  • 10 Finfer S, Chittock DR, Su SY , et al; NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009; 360 (13) 1283-1297
  • 11 Garnacho-Montero J, Aldabo-Pallas T, Garnacho-Montero C , et al. Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis. Crit Care 2006; 10 (4) R111
  • 12 Kumar A, Roberts D, Wood KE , et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34 (6) 1589-1596
  • 13 Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med 2003; 31 (12) 2742-2751
  • 14 Felton TW, Hope WW, Roberts JA. How severe is antibiotic pharmacokinetic variability in critically ill patients and what can be done about it?. Diagn Microbiol Infect Dis 2014; 79 (4) 441-447
  • 15 Zhanel GG, DeCorby M, Laing N , et al; Canadian Antimicrobial Resistance Alliance (CARA). Antimicrobial-resistant pathogens in intensive care units in Canada: results of the Canadian National Intensive Care Unit (CAN-ICU) study, 2005-2006. Antimicrob Agents Chemother 2008; 52 (4) 1430-1437
  • 16 Rhomberg PR, Fritsche TR, Sader HS, Jones RN. Antimicrobial susceptibility pattern comparisons among intensive care unit and general ward Gram-negative isolates from the Meropenem Yearly Susceptibility Test Information Collection Program (USA). Diagn Microbiol Infect Dis 2006; 56 (1) 57-62
  • 17 Mouton JW, Ambrose PG, Canton R , et al. Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resist Updat 2011; 14 (2) 107-117
  • 18 Dulhunty JM, Paterson D, Webb SA, Lipman J. Antimicrobial utilisation in 37 Australian and New Zealand intensive care units. Anaesth Intensive Care 2011; 39 (2) 231-237
  • 19 Singh N, Yu VL. Rational empiric antibiotic prescription in the ICU. Chest 2000; 117 (5) 1496-1499
  • 20 Fridkin SK, Gaynes RP. Antimicrobial resistance in intensive care units. Clin Chest Med 1999; 20 (2) 303-316 , viii
  • 21 Livermore DM. Fourteen years in resistance. Int J Antimicrob Agents 2012; 39 (4) 283-294
  • 22 Ben-David D, Kordevani R, Keller N , et al. Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect 2012; 18 (1) 54-60
  • 23 Lye DC, Earnest A, Ling ML , et al. The impact of multidrug resistance in healthcare-associated and nosocomial Gram-negative bacteraemia on mortality and length of stay: cohort study. Clin Microbiol Infect 2012; 18 (5) 502-508
  • 24 Shorr AF. Review of studies of the impact on Gram-negative bacterial resistance on outcomes in the intensive care unit. Crit Care Med 2009; 37 (4) 1463-1469
  • 25 Roberts JA, Kruger P, Paterson DL, Lipman J. Antibiotic resistance—what's dosing got to do with it?. Crit Care Med 2008; 36 (8) 2433-2440
  • 26 Roberts JA, Abdul-Aziz MH, Lipman J , et al; International Society of Anti-Infective Pharmacology and the Pharmacokinetics and Pharmacodynamics Study Group of the European Society of Clinical Microbiology and Infectious Diseases. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 2014; 14 (6) 498-509
  • 27 Zeitlinger MA, Derendorf H, Mouton JW , et al. Protein binding: do we ever learn?. Antimicrob Agents Chemother 2011; 55 (7) 3067-3074
  • 28 Drusano GL. Pharmacokinetics and pharmacodynamics of antimicrobials. Clin Infect Dis 2007; 45 (1) (Suppl. 01) S89-S95
  • 29 Mouton JW, Jacobs N, Tiddens H, Horrevorts AM. Pharmacodynamics of tobramycin in patients with cystic fibrosis. Diagn Microbiol Infect Dis 2005; 52 (2) 123-127
  • 30 Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26 (1) 1-10 , quiz 11–12
  • 31 Craig WA, Redington J, Ebert SC. Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob Chemother 1991; 27 (Suppl C): 29-40
  • 32 Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 1987; 155 (1) 93-99
  • 33 McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents 2008; 31 (4) 345-351
  • 34 Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am 2003; 17 (3) 479-501
  • 35 Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 2004; 43 (13) 925-942
  • 36 Firsov AA, Strukova EN, Shlykova DS , et al. Bacterial resistance studies using in vitro dynamic models: the predictive power of the mutant prevention and minimum inhibitory antibiotic concentrations. Antimicrob Agents Chemother 2013; 57 (10) 4956-4962
  • 37 Tam VH, Louie A, Deziel MR, Liu W, Drusano GL. The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrob Agents Chemother 2007; 51 (2) 744-747
  • 38 Tam VH, Louie A, Deziel MR, Liu W, Leary R, Drusano GL. Bacterial-population responses to drug-selective pressure: examination of garenoxacin's effect on Pseudomonas aeruginosa . J Infect Dis 2005; 192 (3) 420-428
  • 39 Firsov AA, Vostrov SN, Lubenko IY, Drlica K, Portnoy YA, Zinner SH. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against Staphylococcus aureus . Antimicrob Agents Chemother 2003; 47 (5) 1604-1613
  • 40 Stearne LE, Goessens WH, Mouton JW, Gyssens IC. Effect of dosing and dosing frequency on the efficacy of ceftizoxime and the emergence of ceftizoxime resistance during the early development of murine abscesses caused by Bacteroides fragilis and Enterobacter cloacae mixed infection. Antimicrob Agents Chemother 2007; 51 (10) 3605-3611
  • 41 Jumbe N, Louie A, Leary R , et al. Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. J Clin Invest 2003; 112 (2) 275-285
  • 42 Tam VH, Louie A, Fritsche TR , et al. Impact of drug-exposure intensity and duration of therapy on the emergence of Staphylococcus aureus resistance to a quinolone antimicrobial. J Infect Dis 2007; 195 (12) 1818-1827
  • 43 LaPlante KL, Rybak MJ, Tsuji B, Lodise TP, Kaatz GW. Fluoroquinolone resistance in Streptococcus pneumoniae: area under the concentration-time curve/MIC ratio and resistance development with gatifloxacin, gemifloxacin, levofloxacin, and moxifloxacin. Antimicrob Agents Chemother 2007; 51 (4) 1315-1320
  • 44 Tam VH, Schilling AN, Neshat S, Poole K, Melnick DA, Coyle EA. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa . Antimicrob Agents Chemother 2005; 49 (12) 4920-4927
  • 45 Drusano GL, Bonomo RA, Bahniuk N , et al. Resistance emergence mechanism and mechanism of resistance suppression by tobramycin for cefepime for Pseudomonas aeruginosa . Antimicrob Agents Chemother 2012; 56 (1) 231-242
  • 46 Gumbo T, Louie A, Deziel MR, Parsons LM, Salfinger M, Drusano GL. Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling. J Infect Dis 2004; 190 (9) 1642-1651
  • 47 Baquero F, Negri MC. Strategies to minimize the development of antibiotic resistance. J Chemother 1997; 9 (Suppl. 03) 29-37
  • 48 Baquero F. Resistance to quinolones in gram-negative microorganisms: mechanisms and prevention. Eur Urol 1990; 17 (Suppl. 01) 3-12
  • 49 Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clin Infect Dis 2001; 33 (3) (Suppl. 03) S147-S156
  • 50 Dong Y, Zhao X, Kreiswirth BN, Drlica K. Mutant prevention concentration as a measure of antibiotic potency: studies with clinical isolates of Mycobacterium tuberculosis . Antimicrob Agents Chemother 2000; 44 (9) 2581-2584
  • 51 Dong Y, Zhao X, Domagala J, Drlica K. Effect of fluoroquinolone concentration on selection of resistant mutants of Mycobacterium bovis BCG and Staphylococcus aureus . Antimicrob Agents Chemother 1999; 43 (7) 1756-1758
  • 52 Zhou J, Dong Y, Zhao X , et al. Selection of antibiotic-resistant bacterial mutants: allelic diversity among fluoroquinolone-resistant mutations. J Infect Dis 2000; 182 (2) 517-525
  • 53 Firsov AA, Smirnova MV, Lubenko IY, Vostrov SN, Portnoy YA, Zinner SH. Testing the mutant selection window hypothesis with Staphylococcus aureus exposed to daptomycin and vancomycin in an in vitro dynamic model. J Antimicrob Chemother 2006; 58 (6) 1185-1192
  • 54 Campion JJ, Chung P, McNamara PJ, Titlow WB, Evans ME. Pharmacodynamic modeling of the evolution of levofloxacin resistance in Staphylococcus aureus . Antimicrob Agents Chemother 2005; 49 (6) 2189-2199
  • 55 Zinner SH, Lubenko IY, Gilbert D , et al. Emergence of resistant Streptococcus pneumoniae in an in vitro dynamic model that simulates moxifloxacin concentrations inside and outside the mutant selection window: related changes in susceptibility, resistance frequency and bacterial killing. J Antimicrob Chemother 2003; 52 (4) 616-622
  • 56 Cui J, Liu Y, Wang R, Tong W, Drlica K, Zhao X. The mutant selection window in rabbits infected with Staphylococcus aureus . J Infect Dis 2006; 194 (11) 1601-1608
  • 57 Croisier D, Etienne M, Piroth L , et al. In vivo pharmacodynamic efficacy of gatifloxacin against Streptococcus pneumoniae in an experimental model of pneumonia: impact of the low levels of fluoroquinolone resistance on the enrichment of resistant mutants. J Antimicrob Chemother 2004; 54 (3) 640-647
  • 58 Etienne M, Croisier D, Charles PE , et al. Effect of low-level resistance on subsequent enrichment of fluoroquinolone-resistant Streptococcus pneumoniae in rabbits. J Infect Dis 2004; 190 (8) 1472-1475
  • 59 Andes D, Craig WA. Pharmacodynamics of the new fluoroquinolone gatifloxacin in murine thigh and lung infection models. Antimicrob Agents Chemother 2002; 46 (6) 1665-1670
  • 60 Olofsson SK, Marcusson LL, Komp Lindgren P, Hughes D, Cars O. Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: relation between drug exposure and mutant prevention concentration. J Antimicrob Chemother 2006; 57 (6) 1116-1121
  • 61 Croisier D, Etienne M, Bergoin E , et al. Mutant selection window in levofloxacin and moxifloxacin treatments of experimental pneumococcal pneumonia in a rabbit model of human therapy. Antimicrob Agents Chemother 2004; 48 (5) 1699-1707
  • 62 Knudsen JD, Odenholt I, Erlendsdottir H , et al. Selection of resistant Streptococcus pneumoniae during penicillin treatment in vitro and in three animal models. Antimicrob Agents Chemother 2003; 47 (8) 2499-2506
  • 63 Liang B, Bai N, Cai Y, Wang R, Drlica K, Zhao X. Mutant prevention concentration-based pharmacokinetic/pharmacodynamic indices as dosing targets for suppressing the enrichment of levofloxacin-resistant subpopulations of Staphylococcus aureus . Antimicrob Agents Chemother 2011; 55 (5) 2409-2412
  • 64 Firsov AA, Smirnova MV, Strukova EN, Vostrov SN, Portnoy YA, Zinner SH. Enrichment of resistant Staphylococcus aureus at ciprofloxacin concentrations simulated within the mutant selection window: bolus versus continuous infusion. Int J Antimicrob Agents 2008; 32 (6) 488-493
  • 65 Firsov AA, Vostrov SN, Lubenko IY, Arzamastsev AP, Portnoy YA, Zinner SH. ABT492 and levofloxacin: comparison of their pharmacodynamics and their abilities to prevent the selection of resistant Staphylococcus aureus in an in vitro dynamic model. J Antimicrob Chemother 2004; 54 (1) 178-186
  • 66 Gugel J, Dos Santos Pereira A, Pignatari AC, Gales AC. beta-Lactam MICs correlate poorly with mutant prevention concentrations for clinical isolates of Acinetobacter spp. and Pseudomonas aeruginosa . Antimicrob Agents Chemother 2006; 50 (6) 2276-2277
  • 67 Hansen GT, Metzler K, Drlica K, Blondeau JM. Mutant prevention concentration of gemifloxacin for clinical isolates of Streptococcus pneumoniae . Antimicrob Agents Chemother 2003; 47 (1) 440-441
  • 68 Drusano GL, Johnson DE, Rosen M, Standiford HC. Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis . Antimicrob Agents Chemother 1993; 37 (3) 483-490
  • 69 Blaser J, Stone BB, Groner MC, Zinner SH. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother 1987; 31 (7) 1054-1060
  • 70 Thorburn CE, Edwards DI. The effect of pharmacokinetics on the bactericidal activity of ciprofloxacin and sparfloxacin against Streptococcus pneumoniae and the emergence of resistance. J Antimicrob Chemother 2001; 48 (1) 15-22
  • 71 Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37 (5) 1073-1081
  • 72 Peloquin CA, Cumbo TJ, Nix DE, Sands MF, Schentag JJ. Evaluation of intravenous ciprofloxacin in patients with nosocomial lower respiratory tract infections. Impact of plasma concentrations, organism, minimum inhibitory concentration, and clinical condition on bacterial eradication. Arch Intern Med 1989; 149 (10) 2269-2273
  • 73 Zelenitsky SA, Ariano RE. Support for higher ciprofloxacin AUC 24/MIC targets in treating Enterobacteriaceae bloodstream infection. J Antimicrob Chemother 2010; 65 (8) 1725-1732
  • 74 Drusano GL, Preston SL, Fowler C, Corrado M, Weisinger B, Kahn J. Relationship between fluoroquinolone area under the curve: minimum inhibitory concentration ratio and the probability of eradication of the infecting pathogen, in patients with nosocomial pneumonia. J Infect Dis 2004; 189 (9) 1590-1597
  • 75 Ambrose PG, Grasela DM, Grasela TH, Passarell J, Mayer HB, Pierce PF. Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 2001; 45 (10) 2793-2797
  • 76 Mattoes HM, Banevicius M, Li D , et al. Pharmacodynamic assessment of gatifloxacin against Streptococcus pneumoniae . Antimicrob Agents Chemother 2001; 45 (7) 2092-2097
  • 77 Bédos JP, Azoulay-Dupuis E, Moine P , et al. Pharmacodynamic activities of ciprofloxacin and sparfloxacin in a murine pneumococcal pneumonia model: relevance for drug efficacy. J Pharmacol Exp Ther 1998; 286 (1) 29-35
  • 78 Thomas JK, Forrest A, Bhavnani SM , et al. Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother 1998; 42 (3) 521-527
  • 79 Schentag JJ, Gilliland KK, Paladino JA. What have we learned from pharmacokinetic and pharmacodynamic theories?. Clin Infect Dis 2001; 32 (1) (Suppl. 01) S39-S46
  • 80 Burgess DS, Hall II RG. Simulated comparison of the pharmacodynamics of ciprofloxacin and levofloxacin against Pseudomonas aeruginosa using pharmacokinetic data from healthy volunteers and 2002 minimum inhibitory concentration data. Clin Ther 2007; 29 (7) 1421-1427
  • 81 Gebru E, Choi MJ, Lee SJ, Damte D, Park SC. Mutant-prevention concentration and mechanism of resistance in clinical isolates and enrofloxacin/marbofloxacin-selected mutants of Escherichia coli of canine origin. J Med Microbiol 2011; 60 (Pt 10) 1512-1522
  • 82 Firsov AA, Vostrov SN, Lubenko IY, Zinner SH, Portnoy YA. Concentration-dependent changes in the susceptibility and killing of Staphylococcus aureus in an in vitro dynamic model that simulates normal and impaired gatifloxacin elimination. Int J Antimicrob Agents 2004; 23 (1) 60-66
  • 83 Khachman D, Conil JM, Georges B , et al. Optimizing ciprofloxacin dosing in intensive care unit patients through the use of population pharmacokinetic-pharmacodynamic analysis and Monte Carlo simulations. J Antimicrob Chemother 2011; 66 (8) 1798-1809
  • 84 MacArthur RD, Lolans V, Zar FA, Jackson GG. Biphasic, concentration-dependent and rate-limited, concentration-independent bacterial killing by an aminoglycoside antibiotic. J Infect Dis 1984; 150 (5) 778-779
  • 85 Mouton JW, Vinks AA. Pharmacokinetic/pharmacodynamic modelling of antibacterials in vitro and in vivo using bacterial growth and kill kinetics: the minimum inhibitory concentration versus stationary concentration. Clin Pharmacokinet 2005; 44 (2) 201-210
  • 86 Vogelman B, Gudmundsson S, Leggett J, Turnidge J, Ebert S, Craig WA. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis 1988; 158 (4) 831-847
  • 87 Kashuba AD, Nafziger AN, Drusano GL, Bertino Jr JS. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother 1999; 43 (3) 623-629
  • 88 Zelenitsky SA, Harding GK, Sun S, Ubhi K, Ariano RE. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother 2003; 52 (4) 668-674
  • 89 Drusano GL, Ambrose PG, Bhavnani SM, Bertino JS, Nafziger AN, Louie A. Back to the future: using aminoglycosides again and how to dose them optimally. Clin Infect Dis 2007; 45 (6) 753-760
  • 90 Smith PF, Ballow CH, Booker BM, Forrest A, Schentag JJ. Pharmacokinetics and pharmacodynamics of aztreonam and tobramycin in hospitalized patients. Clin Ther 2001; 23 (8) 1231-1244
  • 91 Xiong YQ, Caillon J, Kergueris MF , et al. Adaptive resistance of Pseudomonas aeruginosa induced by aminoglycosides and killing kinetics in a rabbit endocarditis model. Antimicrob Agents Chemother 1997; 41 (4) 823-826
  • 92 Barclay ML, Begg EJ, Chambers ST. Adaptive resistance following single doses of gentamicin in a dynamic in vitro model. Antimicrob Agents Chemother 1992; 36 (9) 1951-1957
  • 93 Daikos GL, Lolans VT, Jackson GG. First-exposure adaptive resistance to aminoglycoside antibiotics in vivo with meaning for optimal clinical use. Antimicrob Agents Chemother 1991; 35 (1) 117-123
  • 94 Tam VH, Ledesma KR, Vo G, Kabbara S, Lim TP, Nikolaou M. Pharmacodynamic modeling of aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: identifying dosing regimens to suppress resistance development. Antimicrob Agents Chemother 2008; 52 (11) 3987-3993
  • 95 Marik PE, Lipman J, Kobilski S, Scribante J. A prospective randomized study comparing once- versus twice-daily amikacin dosing in critically ill adult and paediatric patients. J Antimicrob Chemother 1991; 28 (5) 753-764
  • 96 Prins JM, Büller HR, Kuijper EJ, Tange RA, Speelman P. Once versus thrice daily gentamicin in patients with serious infections. Lancet 1993; 341 (8841) 335-339
  • 97 Bailey TC, Little JR, Littenberg B, Reichley RM, Dunagan WC. A meta-analysis of extended-interval dosing versus multiple daily dosing of aminoglycosides. Clin Infect Dis 1997; 24 (5) 786-795
  • 98 Munckhof WJ, Grayson ML, Turnidge JD. A meta-analysis of studies on the safety and efficacy of aminoglycosides given either once daily or as divided doses. J Antimicrob Chemother 1996; 37 (4) 645-663
  • 99 Crandon JL, Bulik CC, Kuti JL, Nicolau DP. Clinical pharmacodynamics of cefepime in patients infected with Pseudomonas aeruginosa . Antimicrob Agents Chemother 2010; 54 (3) 1111-1116
  • 100 Mouton JW, Punt N, Vinks AA. Concentration-effect relationship of ceftazidime explains why the time above the MIC is 40 percent for a static effect in vivo. Antimicrob Agents Chemother 2007; 51 (9) 3449-3451
  • 101 Ong CT, Tessier PR, Li C, Nightingale CH, Nicolau DP. Comparative in vivo efficacy of meropenem, imipenem, and cefepime against Pseudomonas aeruginosa expressing MexA-MexB-OprM efflux pumps. Diagn Microbiol Infect Dis 2007; 57 (2) 153-161
  • 102 Muller AE, Punt N, Mouton JW. Exposure to ceftobiprole is associated with microbiological eradication and clinical cure in patients with nosocomial pneumonia. Antimicrob Agents Chemother 2014; 58 (5) 2512-2519
  • 103 Muller AE, Punt N, Mouton JW. Optimal exposures of ceftazidime predict the probability of microbiological and clinical outcome in the treatment of nosocomial pneumonia. J Antimicrob Chemother 2013; 68 (4) 900-906
  • 104 Roberts JA, Paul SK, Akova M , et al; DALI Study. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients?. Clin Infect Dis 2014; 58 (8) 1072-1083
  • 105 Ariano RE, Nyhlén A, Donnelly JP, Sitar DS, Harding GK, Zelenitsky SA. Pharmacokinetics and pharmacodynamics of meropenem in febrile neutropenic patients with bacteremia. Ann Pharmacother 2005; 39 (1) 32-38
  • 106 Mouton JW, den Hollander JG. Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 1994; 38 (5) 931-936
  • 107 Li C, Du X, Kuti JL, Nicolau DP. Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother 2007; 51 (5) 1725-1730
  • 108 Tam VH, McKinnon PS, Akins RL, Rybak MJ, Drusano GL. Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother 2002; 50 (3) 425-428
  • 109 Abdul-Aziz MH, Dulhunty JM, Bellomo R, Lipman J, Roberts JA. Continuous beta-lactam infusion in critically ill patients: the clinical evidence. Ann Intensive Care 2012; 2 (1) 37
  • 110 Fantin B, Farinotti R, Thabaut A, Carbon C. Conditions for the emergence of resistance to cefpirome and ceftazidime in experimental endocarditis due to Pseudomonas aeruginosa . J Antimicrob Chemother 1994; 33 (3) 563-569
  • 111 Olofsson SK, Geli P, Andersson DI, Cars O. Pharmacodynamic model to describe the concentration-dependent selection of cefotaxime-resistant Escherichia coli . Antimicrob Agents Chemother 2005; 49 (12) 5081-5091
  • 112 Goessens WH, Mouton JW, ten Kate MT, Bijl AJ, Ott A, Bakker-Woudenberg IA. Role of ceftazidime dose regimen on the selection of resistant Enterobacter cloacae in the intestinal flora of rats treated for an experimental pulmonary infection. J Antimicrob Chemother 2007; 59 (3) 507-516
  • 113 Tam VH, Schilling AN, Melnick DA, Coyle EA. Comparison of beta-lactams in counter-selecting resistance of Pseudomonas aeruginosa . Diagn Microbiol Infect Dis 2005; 52 (2) 145-151
  • 114 Gudmundsson S, Vogelman B, Craig WA. The in-vivo postantibiotic effect of imipenem and other new antimicrobials. J Antimicrob Chemother 1986; 18 (Suppl E): 67-73
  • 115 Fuentes F, Martín MM, Izquierdo J, Gomez-Lus ML, Prieto J. In vivo and in vitro study of several pharmacodynamic effects of meropenem. Scand J Infect Dis 1995; 27 (5) 469-474
  • 116 Tam VH, Ledesma KR, Schilling AN , et al. In vivo dynamics of carbapenem-resistant Pseudomonas aeruginosa selection after suboptimal dosing. Diagn Microbiol Infect Dis 2009; 64 (4) 427-433
  • 117 Zinner SH, Gilbert D, Greer K, Portnoy YA, Firsov AA. Concentration-resistance relationships with Pseudomonas aeruginosa exposed to doripenem and ciprofloxacin in an in vitro model. J Antimicrob Chemother 2013; 68 (4) 881-887
  • 118 Roberts JA, Kirkpatrick CM, Roberts MS, Robertson TA, Dalley AJ, Lipman J. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother 2009; 64 (1) 142-150
  • 119 Lorente L, Lorenzo L, Martín MM, Jiménez A, Mora ML. Meropenem by continuous versus intermittent infusion in ventilator-associated pneumonia due to gram-negative bacilli. Ann Pharmacother 2006; 40 (2) 219-223
  • 120 Krueger WA, Bulitta J, Kinzig-Schippers M , et al. Evaluation by monte carlo simulation of the pharmacokinetics of two doses of meropenem administered intermittently or as a continuous infusion in healthy volunteers. Antimicrob Agents Chemother 2005; 49 (5) 1881-1889
  • 121 Louie A, Bied A, Fregeau C , et al. Impact of different carbapenems and regimens of administration on resistance emergence for three isogenic Pseudomonas aeruginosa strains with differing mechanisms of resistance. Antimicrob Agents Chemother 2010; 54 (6) 2638-2645
  • 122 Chastre J, Wunderink R, Prokocimer P, Lee M, Kaniga K, Friedland I. Efficacy and safety of intravenous infusion of doripenem versus imipenem in ventilator-associated pneumonia: a multicenter, randomized study. Crit Care Med 2008; 36 (4) 1089-1096
  • 123 Löwdin E, Odenholt I, Cars O. In vitro studies of pharmacodynamic properties of vancomycin against Staphylococcus aureus and Staphylococcus epidermidis . Antimicrob Agents Chemother 1998; 42 (10) 2739-2744
  • 124 Larsson AJ, Walker KJ, Raddatz JK, Rotschafer JC. The concentration-independent effect of monoexponential and biexponential decay in vancomycin concentrations on the killing of Staphylococcus aureus under aerobic and anaerobic conditions. J Antimicrob Chemother 1996; 38 (4) 589-597
  • 125 Chambers HF, Kennedy S. Effects of dosage, peak and trough concentrations in serum, protein binding, and bactericidal rate on efficacy of teicoplanin in a rabbit model of endocarditis. Antimicrob Agents Chemother 1990; 34 (4) 510-514
  • 126 Knudsen JD, Fuursted K, Raber S, Espersen F, Frimodt-Moller N. Pharmacodynamics of glycopeptides in the mouse peritonitis model of Streptococcus pneumoniae or Staphylococcus aureus infection. Antimicrob Agents Chemother 2000; 44 (5) 1247-1254
  • 127 Moise PA, Forrest A, Bhavnani SM, Birmingham MC, Schentag JJ. Area under the inhibitory curve and a pneumonia scoring system for predicting outcomes of vancomycin therapy for respiratory infections by Staphylococcus aureus . Am J Health Syst Pharm 2000; 57 (2) (Suppl. 02) S4-S9
  • 128 Zelenitsky S, Rubinstein E, Ariano R , et al; Cooperative Antimicrobial Therapy of Septic Shock-CATSS Database Research Group. Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int J Antimicrob Agents 2013; 41 (3) 255-260
  • 129 Rybak MJ, Lomaestro BM, Rotschafer JC , et al. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis 2009; 49 (3) 325-327
  • 130 American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005; 171 (4) 388-416
  • 131 Tsuji BT, Rybak MJ, Lau KL, Sakoulas G. Evaluation of accessory gene regulator (agr) group and function in the proclivity towards vancomycin intermediate resistance in Staphylococcus aureus . Antimicrob Agents Chemother 2007; 51 (3) 1089-1091
  • 132 Charles PG, Ward PB, Johnson PD, Howden BP, Grayson ML. Clinical features associated with bacteremia due to heterogeneous vancomycin-intermediate Staphylococcus aureus . Clin Infect Dis 2004; 38 (3) 448-451
  • 133 Sakoulas G, Gold HS, Cohen RA, Venkataraman L, Moellering RC, Eliopoulos GM. Effects of prolonged vancomycin administration on methicillin-resistant Staphylococcus aureus (MRSA) in a patient with recurrent bacteraemia. J Antimicrob Chemother 2006; 57 (4) 699-704
  • 134 Howden BP, Ward PB, Charles PG , et al. Treatment outcomes for serious infections caused by methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility. Clin Infect Dis 2004; 38 (4) 521-528
  • 135 del Mar Fernández de Gatta Garcia M, Revilla N, Calvo MV, Domínguez-Gil A, Sánchez Navarro A. Pharmacokinetic/pharmacodynamic analysis of vancomycin in ICU patients. Intensive Care Med 2007; 33 (2) 279-285
  • 136 Andes D, van Ogtrop ML, Peng J, Craig WA. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother 2002; 46 (11) 3484-3489
  • 137 Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet 2003; 42 (15) 1411-1423
  • 138 Buchanan LV, Dailey CF, LeMay RJ, Zielinski RJ, Kuo MS, Gibson JK. Time-dependent antibacterial effects of linezolid in experimental rabbit endocarditis. J Antimicrob Chemother 2002; 50 (3) 440-442
  • 139 Zoller M, Maier B, Hornuss C , et al. Variability of linezolid concentrations after standard dosing in critically ill patients: a prospective observational study. Crit Care 2014; 18 (4) R148
  • 140 Dong H, Wang X, Dong Y , et al. Clinical pharmacokinetic/pharmacodynamic profile of linezolid in severely ill intensive care unit patients. Int J Antimicrob Agents 2011; 38 (4) 296-300
  • 141 Adembri C, Fallani S, Cassetta MI , et al. Linezolid pharmacokinetic/pharmacodynamic profile in critically ill septic patients: intermittent versus continuous infusion. Int J Antimicrob Agents 2008; 31 (2) 122-129
  • 142 Cattaneo D, Orlando G, Cozzi V , et al. Linezolid plasma concentrations and occurrence of drug-related haematological toxicity in patients with gram-positive infections. Int J Antimicrob Agents 2013; 41 (6) 586-589
  • 143 Livermore DM. Linezolid in vitro: mechanism and antibacterial spectrum. J Antimicrob Chemother 2003; 51 (Suppl. 02) ii9-ii16
  • 144 Sánchez García M, De la Torre MA, Morales G , et al. Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. JAMA 2010; 303 (22) 2260-2264
  • 145 Hentschke M, Saager B, Horstkotte MA , et al. Emergence of linezolid resistance in a methicillin resistant Staphylococcus aureus strain. Infection 2008; 36 (1) 85-87
  • 146 Pai MP, Rodvold KA, Schreckenberger PC, Gonzales RD, Petrolatti JM, Quinn JP. Risk factors associated with the development of infection with linezolid- and vancomycin-resistant Enterococcus faecium. Clin Infect Dis 2002; 35 (10) 1269-1272
  • 147 Wunderink RG, Niederman MS, Kollef MH , et al. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis 2012; 54 (5) 621-629
  • 148 Herrmann DJ, Peppard WJ, Ledeboer NA, Theesfeld ML, Weigelt JA, Buechel BJ. Linezolid for the treatment of drug-resistant infections. Expert Rev Anti Infect Ther 2008; 6 (6) 825-848
  • 149 Safdar N, Andes D, Craig WA. In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother 2004; 48 (1) 63-68
  • 150 Dandekar PK, Tessier PR, Williams P, Zhang C, Nightingale CH, Nicolau DP. Determination of the pharmacodynamic profile of daptomycin against Streptococcus pneumoniae isolates with varying susceptibility to penicillin in a murine thigh infection model. Chemotherapy 2004; 50 (1) 11-16
  • 151 Louie A, Kaw P, Liu W, Jumbe N, Miller MH, Drusano GL. Pharmacodynamics of daptomycin in a murine thigh model of Staphylococcus aureus infection. Antimicrob Agents Chemother 2001; 45 (3) 845-851
  • 152 Dvorchik BH, Brazier D, DeBruin MF, Arbeit RD. Daptomycin pharmacokinetics and safety following administration of escalating doses once daily to healthy subjects. Antimicrob Agents Chemother 2003; 47 (4) 1318-1323
  • 153 Woodworth JR, Nyhart Jr EH, Brier GL, Wolny JD, Black HR. Single-dose pharmacokinetics and antibacterial activity of daptomycin, a new lipopeptide antibiotic, in healthy volunteers. Antimicrob Agents Chemother 1992; 36 (2) 318-325
  • 154 Gould IM, David MZ, Esposito S , et al. New insights into meticillin-resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance. Int J Antimicrob Agents 2012; 39 (2) 96-104
  • 155 Fowler Jr VG, Boucher HW, Corey GR , et al; S. aureus Endocarditis and Bacteremia Study Group. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus . N Engl J Med 2006; 355 (7) 653-665
  • 156 Liu C, Bayer A, Cosgrove SE , et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis 2011; 52 (3) 285-292
  • 157 Moise PA, Hershberger E, Amodio-Groton MI, Lamp KC. Safety and clinical outcomes when utilizing high-dose (> or =8 mg/kg) daptomycin therapy. Ann Pharmacother 2009; 43 (7) 1211-1219
  • 158 Bassetti M, Nicco E, Ginocchio F, Ansaldi F, de Florentiis D, Viscoli C. High-dose daptomycin in documented Staphylococcus aureus infections. Int J Antimicrob Agents 2010; 36 (5) 459-461
  • 159 Figueroa DA, Mangini E, Amodio-Groton M , et al. Safety of high-dose intravenous daptomycin treatment: three-year cumulative experience in a clinical program. Clin Infect Dis 2009; 49 (2) 177-180
  • 160 Falagas ME, Maraki S, Karageorgopoulos DE, Kastoris AC, Mavromanolakis E, Samonis G. Antimicrobial susceptibility of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Enterobacteriaceae isolates to fosfomycin. Int J Antimicrob Agents 2010; 35 (3) 240-243
  • 161 Patel SS, Balfour JA, Bryson HM. Fosfomycin tromethamine. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy as a single-dose oral treatment for acute uncomplicated lower urinary tract infections. Drugs 1997; 53 (4) 637-656
  • 162 Dinh A, Salomon J, Bru JP, Bernard L. Fosfomycin: efficacy against infections caused by multidrug-resistant bacteria. Scand J Infect Dis 2012; 44 (3) 182-189
  • 163 Thauvin C, Lemeland JF, Humbert G, Fillastre JP. Efficacy of pefloxacin-fosfomycin in experimental endocarditis caused by methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother 1988; 32 (6) 919-921
  • 164 Portier H, Kazmierczak A, Lucht F, Tremeaux JC, Chavanet P, Duez JM. Cefotaxime in combination with other antibiotics for the treatment of severe methicillin-resistant staphylococcal infections. Infection 1985; 13 (Suppl. 01) S123-S128
  • 165 Komatsuzawa H, Suzuki J, Sugai M, Miyake Y, Suginaka H. Effect of combination of oxacillin and non-beta-lactam antibiotics on methicillin-resistant Staphylococcus aureus . J Antimicrob Chemother 1994; 33 (6) 1155-1163
  • 166 Sahuquillo Arce JM, Colombo Gainza E, Gil Brusola A, Ortiz Estévez R, Cantón E, Gobernado M. In vitro activity of linezolid in combination with doxycycline, fosfomycin, levofloxacin, rifampicin and vancomycin against methicillin-susceptible Staphylococcus aureus . Rev Esp Quimioter 2006; 19 (3) 252-257
  • 167 Ferrara A, Dos Santos C, Cimbro M, Gialdroni Grassi G. Effect of different combinations of sparfloxacin, oxacillin, and fosfomycin against methicillin-resistant staphylococci. Eur J Clin Microbiol Infect Dis 1997; 16 (7) 535-537
  • 168 Okazaki M, Suzuki K, Asano N , et al. Effectiveness of fosfomycin combined with other antimicrobial agents against multidrug-resistant Pseudomonas aeruginosa isolates using the efficacy time index assay. J Infect Chemother 2002; 8 (1) 37-42
  • 169 Hayami H, Goto T, Kawahara M, Ohi Y. Activities of beta-lactams, fluoroquinolones, amikacin and fosfomycin alone and in combination against Pseudomonas aeruginosa isolated from complicated urinary tract infections. J Infect Chemother 1999; 5 (3) 130-138
  • 170 Reguera JA, Baquero F, Berenguer J, Martinez-Ferrer M, Martinez JL. Beta-lactam-fosfomycin antagonism involving modification of penicillin-binding protein 3 in Pseudomonas aeruginosa . Antimicrob Agents Chemother 1990; 34 (11) 2093-2096
  • 171 Michalopoulos A, Virtzili S, Rafailidis P, Chalevelakis G, Damala M, Falagas ME. Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: a prospective evaluation. Clin Microbiol Infect 2010; 16 (2) 184-186
  • 172 Li J, Turnidge J, Milne R, Nation RL, Coulthard K. In vitro pharmacodynamic properties of colistin and colistin methanesulfonate against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 2001; 45 (3) 781-785
  • 173 Dudhani RV, Turnidge JD, Coulthard K , et al. Elucidation of the pharmacokinetic/pharmacodynamic determinant of colistin activity against Pseudomonas aeruginosa in murine thigh and lung infection models. Antimicrob Agents Chemother 2010; 54 (3) 1117-1124
  • 174 Dudhani RV, Turnidge JD, Nation RL, Li J. fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J Antimicrob Chemother 2010; 65 (9) 1984-1990
  • 175 Lim LM, Ly N, Anderson D , et al. Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy 2010; 30 (12) 1279-1291
  • 176 Yau W, Owen RJ, Poudyal A , et al. Colistin hetero-resistance in multidrug-resistant Acinetobacter baumannii clinical isolates from the Western Pacific region in the SENTRY antimicrobial surveillance programme. J Infect 2009; 58 (2) 138-144
  • 177 Hawley JS, Murray CK, Jorgensen JH. Colistin heteroresistance in acinetobacter and its association with previous colistin therapy. Antimicrob Agents Chemother 2008; 52 (1) 351-352
  • 178 Poudyal A, Howden BP, Bell JM , et al. In vitro pharmacodynamics of colistin against multidrug-resistant Klebsiella pneumoniae . J Antimicrob Chemother 2008; 62 (6) 1311-1318
  • 179 Bergen PJ, Forrest A, Bulitta JB , et al. Clinically relevant plasma concentrations of colistin in combination with imipenem enhance pharmacodynamic activity against multidrug-resistant Pseudomonas aeruginosa at multiple inocula. Antimicrob Agents Chemother 2011; 55 (11) 5134-5142
  • 180 Bergen PJ, Li J, Nation RL, Turnidge JD, Coulthard K, Milne RW. Comparison of once-, twice- and thrice-daily dosing of colistin on antibacterial effect and emergence of resistance: studies with Pseudomonas aeruginosa in an in vitro pharmacodynamic model. J Antimicrob Chemother 2008; 61 (3) 636-642
  • 181 Tan CH, Li J, Nation RL. Activity of colistin against heteroresistant Acinetobacter baumannii and emergence of resistance in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 2007; 51 (9) 3413-3415
  • 182 Garonzik SM, Li J, Thamlikitkul V , et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 2011; 55 (7) 3284-3294
  • 183 Marchand S, Frat JP, Petitpas F , et al. Removal of colistin during intermittent haemodialysis in two critically ill patients. J Antimicrob Chemother 2010; 65 (8) 1836-1837
  • 184 Plachouras D, Karvanen M, Friberg LE , et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother 2009; 53 (8) 3430-3436
  • 185 Dalfino L, Puntillo F, Mosca A , et al. High-dose, extended-interval colistin administration in critically ill patients: is this the right dosing strategy? A preliminary study. Clin Infect Dis 2012; 54 (12) 1720-1726
  • 186 Karvanen M, Plachouras D, Friberg LE , et al. Colistin methanesulfonate and colistin pharmacokinetics in critically ill patients receiving continuous venovenous hemodiafiltration. Antimicrob Agents Chemother 2013; 57 (1) 668-671
  • 187 Markou N, Fousteri M, Markantonis SL , et al. Colistin pharmacokinetics in intensive care unit patients on continuous venovenous haemodiafiltration: an observational study. J Antimicrob Chemother 2012; 67 (10) 2459-2462
  • 188 Matthaiou DK, Michalopoulos A, Rafailidis PI , et al. Risk factors associated with the isolation of colistin-resistant gram-negative bacteria: a matched case-control study. Crit Care Med 2008; 36 (3) 807-811
  • 189 Mentzelopoulos SD, Pratikaki M, Platsouka E , et al. Prolonged use of carbapenems and colistin predisposes to ventilator-associated pneumonia by pandrug-resistant Pseudomonas aeruginosa . Intensive Care Med 2007; 33 (9) 1524-1532
  • 190 Martínez JA, Cobos-Trigueros N, Soriano A , et al. Influence of empiric therapy with a beta-lactam alone or combined with an aminoglycoside on prognosis of bacteremia due to gram-negative microorganisms. Antimicrob Agents Chemother 2010; 54 (9) 3590-3596
  • 191 Kumar A, Zarychanski R, Light B , et al; Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: a propensity-matched analysis. Crit Care Med 2010; 38 (9) 1773-1785
  • 192 Kumar A, Safdar N, Kethireddy S, Chateau D. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 2010; 38 (8) 1651-1664
  • 193 Chamot E, Boffi El Amari E, Rohner P, Van Delden C. Effectiveness of combination antimicrobial therapy for Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2003; 47 (9) 2756-2764
  • 194 Cosgrove SE, Vigliani GA, Fowler Jr VG , et al. Initial low-dose gentamicin for Staphylococcus aureus bacteremia and endocarditis is nephrotoxic. Clin Infect Dis 2009; 48 (6) 713-721
  • 195 Riedel DJ, Weekes E, Forrest GN. Addition of rifampin to standard therapy for treatment of native valve infective endocarditis caused by Staphylococcus aureus . Antimicrob Agents Chemother 2008; 52 (7) 2463-2467
  • 196 Falagas ME, Matthaiou DK, Bliziotis IA. The role of aminoglycosides in combination with a beta-lactam for the treatment of bacterial endocarditis: a meta-analysis of comparative trials. J Antimicrob Chemother 2006; 57 (4) 639-647
  • 197 Vardakas KZ, Tansarli GS, Bliziotis IA, Falagas ME. β-Lactam plus aminoglycoside or fluoroquinolone combination versus β-lactam monotherapy for Pseudomonas aeruginosa infections: a meta-analysis. Int J Antimicrob Agents 2013; 41 (4) 301-310
  • 198 Peña C, Suarez C, Ocampo-Sosa A , et al; Spanish Network for Research in Infectious Diseases (REIPI). Effect of adequate single-drug vs combination antimicrobial therapy on mortality in Pseudomonas aeruginosa bloodstream infections: a post hoc analysis of a prospective cohort. Clin Infect Dis 2013; 57 (2) 208-216
  • 199 Marcus R, Paul M, Elphick H, Leibovici L. Clinical implications of β-lactam-aminoglycoside synergism: systematic review of randomised trials. Int J Antimicrob Agents 2011; 37 (6) 491-503
  • 200 Louie A, Grasso C, Bahniuk N , et al. The combination of meropenem and levofloxacin is synergistic with respect to both Pseudomonas aeruginosa kill rate and resistance suppression. Antimicrob Agents Chemother 2010; 54 (6) 2646-2654
  • 201 den Hollander JG, Horrevorts AM, van Goor ML, Verbrugh HA, Mouton JW. Synergism between tobramycin and ceftazidime against a resistant Pseudomonas aeruginosa strain, tested in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 1997; 41 (1) 95-100
  • 202 Mouton JW, van Ogtrop ML, Andes D, Craig WA. Use of pharmacodynamic indices to predict efficacy of combination therapy in vivo. Antimicrob Agents Chemother 1999; 43 (10) 2473-2478
  • 203 Zavascki AP, Bulitta JB, Landersdorfer CB. Combination therapy for carbapenem-resistant Gram-negative bacteria. Expert Rev Anti Infect Ther 2013; 11 (12) 1333-1353
  • 204 Epstein BJ, Gums JG, Drlica K. The changing face of antibiotic prescribing: the mutant selection window. Ann Pharmacother 2004; 38 (10) 1675-1682
  • 205 Zhanel GG, Mayer M, Laing N, Adam HJ. Mutant prevention concentrations of levofloxacin alone and in combination with azithromycin, ceftazidime, colistin (Polymyxin E), meropenem, piperacillin-tazobactam, and tobramycin against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006; 50 (6) 2228-2230
  • 206 Lister PD, Wolter DJ. Levofloxacin-imipenem combination prevents the emergence of resistance among clinical isolates of Pseudomonas aeruginosa . Clin Infect Dis 2005; 40 (2) (Suppl. 02) S105-S114
  • 207 Firsov AA, Vostrov SN, Lubenko IY, Portnoy YA, Zinner SH. Prevention of the selection of resistant Staphylococcus aureus by moxifloxacin plus doxycycline in an in vitro dynamic model: an additive effect of the combination. Int J Antimicrob Agents 2004; 23 (5) 451-456
  • 208 Drusano GL, Liu W, Fregeau C, Kulawy R, Louie A. Differing effects of combination chemotherapy with meropenem and tobramycin on cell kill and suppression of resistance of wild-type Pseudomonas aeruginosa PAO1 and its isogenic MexAB efflux pump-overexpressed mutant. Antimicrob Agents Chemother 2009; 53 (6) 2266-2273
  • 209 Mendes RE, Fritsche TR, Sader HS, Jones RN. Increased antimicrobial susceptibility profiles among polymyxin-resistant Acinetobacter baumannii clinical isolates. Clin Infect Dis 2008; 46 (8) 1324-1326
  • 210 Mantzarlis K, Makris D, Manoulakas E, Karvouniaris M, Zakynthinos E. Risk factors for the first episode of Klebsiella pneumoniae resistant to carbapenems infection in critically ill patients: a prospective study. Biomed Res Int 2013; 2013: 850547
  • 211 Micek ST, Ward S, Fraser VJ, Kollef MH. A randomized controlled trial of an antibiotic discontinuation policy for clinically suspected ventilator-associated pneumonia. Chest 2004; 125 (5) 1791-1799
  • 212 Chastre J, Wolff M, Fagon JY , et al; PneumA Trial Group. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 2003; 290 (19) 2588-2598
  • 213 Singh N, Rogers P, Atwood CW, Wagener MM, Yu VL. Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med 2000; 162 (2, Pt 1) 505-511
  • 214 Taccone FS, Laterre PF, Spapen H , et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care 2010; 14 (2) R53
  • 215 Rea RS, Capitano B, Bies R, Bigos KL, Smith R, Lee H. Suboptimal aminoglycoside dosing in critically ill patients. Ther Drug Monit 2008; 30 (6) 674-681
  • 216 Gonçalves-Pereira J, Póvoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of β-lactams. Crit Care 2011; 15 (5) R206
  • 217 Buerger C, Plock N, Dehghanyar P, Joukhadar C, Kloft C. Pharmacokinetics of unbound linezolid in plasma and tissue interstitium of critically ill patients after multiple dosing using microdialysis. Antimicrob Agents Chemother 2006; 50 (7) 2455-2463
  • 218 Tsuji BT, Brown T, Parasrampuria R , et al. Front-loaded linezolid regimens result in increased killing and suppression of the accessory gene regulator system of Staphylococcus aureus . Antimicrob Agents Chemother 2012; 56 (7) 3712-3719
  • 219 Mohd Hafiz AA, Staatz CE, Kirkpatrick CM, Lipman J, Roberts JA. Continuous infusion vs. bolus dosing: implications for beta-lactam antibiotics. Minerva Anestesiol 2012; 78 (1) 94-104