Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Familial aggregation and linkage analysis of autoantibody traits in pedigrees multiplex for systemic lupus erythematosus

Abstract

Autoantibodies are clinically relevant biomarkers for numerous autoimmune disorders. The genetic basis of autoantibody production in systemic lupus erythematosus (SLE) and other autoimmune diseases is poorly understood. In this study, we characterized autoantibody profiles in 1506 individuals from 229 multiplex SLE pedigrees. There was strong familial aggregation of antinuclear antibodies (ANAs), anti-double-stranded DNA (dsDNA), anti-La/SSB, anti-Ro/SSA, anti-Sm, anti-nRNP (nuclear ribonucleoprotein), IgM antiphospholipid (aPL) antibodies (Abs) and rheumatoid factor (RF) across these families enriched for lupus. We performed genome-wide linkage analyses in an effort to map genes that contribute to the production of the following autoantibodies: Ro/SSA, La/SSB, nRNP, Sm, dsDNA, RF, nuclear and phospholipids. Using an approach to minimize false positives and adjust for multiple comparisons, evidence for linkage was found to anti-La/SSB Abs on chromosome 3q21 (adjusted P=1.9 × 10−6), to anti-nRNP and/or anti-Sm Abs on chromosome 3q27 (adjusted P=3.5 × 10−6), to anti-Ro/SSA and/or anti-La/SSB Abs on chromosome 4q34–q35 (adjusted P=3.4 × 10−4) and to anti-IgM aPL Abs on chromosome 13q14 (adjusted P=2.3 × 10−4). These results support the hypothesis that autoantibody production is a genetically complex trait. Identification of the causative alleles will advance our understanding of critical molecular mechanisms that underlie SLE and perhaps other autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Davidson A, Diamond B . Autoimmune diseases. N Engl J Med 2001; 345: 340–350.

    CAS  PubMed  Google Scholar 

  2. Jacobson DL, Gange SJ, Rose NR, Graham NM . Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 1997; 84: 223–243.

    CAS  PubMed  Google Scholar 

  3. NIH. Report of the NIH Autoimmune Diseases Coordinating Committee. US Department of Health and Human Services, 2002, NIH publication no. 03-5140.

  4. Becker KG, Simon RM, Bailey-Wilson JE, Freidlin B, Biddison WE, McFarland HF et al. Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci USA 1998; 95: 9979–9984.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Maas K, Chan S, Parker J, Slater A, Moore J, Olsen N et al. Cutting edge: molecular portrait of human autoimmune disease. J Immunol 2002; 169: 5–9.

    CAS  PubMed  Google Scholar 

  6. Myerscough A, John S, Barrett JH, Ollier WE, Worthington J . Linkage of rheumatoid arthritis to insulin-dependent diabetes mellitus loci: evidence supporting a hypothesis for the existence of common autoimmune susceptibility loci. Arthritis Rheum 2000; 43: 2771–2775.

    CAS  PubMed  Google Scholar 

  7. Hunt KA, McGovern DP, Kumar PJ, Ghosh S, Travis SP, Walters JR et al. A common CTLA4 haplotype associated with coeliac disease. Eur J Hum Genet 2005; 13: 440–444.

    CAS  PubMed  Google Scholar 

  8. Zhou Y, Huang D, Paris PL, Sauter CS, Prock KA, Hoffman GS . An analysis of CTLA-4 and proinflammatory cytokine genes in Wegener's granulomatosis. Arthritis Rheum 2004; 50: 2645–2650.

    CAS  PubMed  Google Scholar 

  9. Furugaki K, Shirasawa S, Ishikawa N, Ito K, Ito K, Kubota S et al. Association of the T-cell regulatory gene CTLA4 with Graves’ disease and autoimmune thyroid disease in the Japanese. J Hum Genet 2004; 49: 166–168.

    CAS  PubMed  Google Scholar 

  10. Torres B, Aguilar F, Franco E, Sanchez E, Sanchez-Roman J, Alonso JJ et al. Association of the CT60 marker of the CTLA4 gene with systemic lupus erythematosus. Arthritis Rheum 2004; 50: 2211–2215.

    CAS  PubMed  Google Scholar 

  11. Barreto M, Santos E, Ferreira R, Fesel C, Fontes MF, Pereira C et al. Evidence for CTLA4 as a susceptibility gene for systemic lupus erythematosus. Eur J Hum Genet 2004; 12: 620–626.

    CAS  PubMed  Google Scholar 

  12. Blomhoff A, Lie BA, Myhre AG, Kemp EH, Weetman AP, Akselsen HE et al. Polymorphisms in the cytotoxic T lymphocyte antigen-4 gene region confer susceptibility to Addison's disease. J Clin Endocrinol Metab 2004; 89: 3474–3476.

    CAS  PubMed  Google Scholar 

  13. Blomhoff A, Helen Kemp E, Gawkrodger DJ, Weetman AP, Husebye ES, Akselsen HE et al. CTLA4 polymorphisms are associated with vitiligo, in patients with concomitant autoimmune diseases. Pigment Cell Res 2005; 18: 55–58.

    CAS  PubMed  Google Scholar 

  14. Lee CS, Lee YJ, Liu HF, Su CH, Chang SC, Wang BR et al. Association of CTLA4 gene A-G polymorphism with rheumatoid arthritis in Chinese. Clin Rheumatol 2003; 22: 221–224.

    PubMed  Google Scholar 

  15. Zhernakova A, Eerligh P, Barrera P, Weseloy JZ, Huizinga TW, Roep BO et al. CTLA4 is differentially associated with autoimmune diseases in the Dutch population. Hum Genet 2005; 118: 58–66.

    CAS  PubMed  Google Scholar 

  16. Kroner A, Mehling M, Hemmer B, Rieckmann P, Toyka KV, Maurer M et al. A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol 2005; 58: 50–57.

    CAS  PubMed  Google Scholar 

  17. Prokunina L, Alarcon-Riquelme M . The genetic basis of systemic lupus erythematosus – knowledge of today and thoughts for tomorrow. Hum Mol Genet 2004; 13 (Spec No. 1): R143–R148.

    CAS  PubMed  Google Scholar 

  18. Tsao BP . Update on human systemic lupus erythematosus genetics. Curr Opin Rheumatol 2004; 16: 513–521.

    CAS  PubMed  Google Scholar 

  19. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75: 330–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36: 337–338.

    CAS  PubMed  Google Scholar 

  21. Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M et al. Analysis of Families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005; 76: 561–571.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kyogoku C, Langefeld CD, Ortmann WA, Lee A, Selby S, Carlton VE et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 2004; 75: 504–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ladner MB, Bottini N, Valdes AM, Noble JA . Association of the single nucleotide polymorphism C1858T of the PTPN22 gene with type 1 diabetes. Hum Immunol 2005; 66: 60–64.

    CAS  PubMed  Google Scholar 

  24. Onengut-Gumuscu S, Ewens KG, Spielman RS, Concannon P . A functional polymorphism (1858C/T) in the PTPN22 gene is linked and associated with type I diabetes in multiplex families. Genes Immun 2004; 5: 678–680.

    CAS  PubMed  Google Scholar 

  25. Orozco G, Sanchez E, Gonzalez-Gay MA, Lopez-Nevot MA, Torres B, Caliz R et al. Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum 2005; 52: 219–224.

    Article  CAS  PubMed  Google Scholar 

  26. Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab 2004; 89: 5862–5865.

    CAS  PubMed  Google Scholar 

  27. Smyth D, Cooper JD, Collins JE, Heward JM, Franklyn JA, Howson JM et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 2004; 53: 3020–3023.

    CAS  PubMed  Google Scholar 

  28. Jagiello P, Aries P, Arning L, Wagenleiter SE, Csernok E, Hellmich B et al. The PTPN22 620W allele is a risk factor for Wegener's granulomatosis. Arthritis Rheum 2005; 52: 4039–4043.

    CAS  PubMed  Google Scholar 

  29. Zhernakova A, Eerligh P, Wijmenga C, Barrera P, Roep BO, Koeleman BP . Differential association of the PTPN22 coding variant with autoimmune diseases in a Dutch population. Genes Immun 2005; 6: 459–461.

    CAS  PubMed  Google Scholar 

  30. Marrack P, Kappler J, Kotzin BL . Autoimmune disease: why and where it occurs. Nat Med 2001; 7: 899–905.

    CAS  PubMed  Google Scholar 

  31. Rus V, Hochberg M . The epidemiology of systemic lupus erythematosus. In: Wallace DL, Hahn BH (eds). Dubois’ Lupus Erythematosus. Lippincott Williams & Wilkins: Philadelphia, 2002, pp 66–69.

    Google Scholar 

  32. Hochberg MC . Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997; 40: 1725.

    CAS  PubMed  Google Scholar 

  33. Sawalha AH, Harley JB . Antinuclear autoantibodies in systemic lupus erythematosus. Curr Opin Rheumatol 2004; 16: 534–540.

    PubMed  Google Scholar 

  34. Mongey AB, Hess EV . The role of environment in systemic lupus erythematosus and associated disorders. In: Wallace DL, Hahn BH (eds). Dubois’ lupus erythematosus. Lippincott Williams & Wilkins: Philadelphia, 2002, pp 33–64.

    Google Scholar 

  35. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    CAS  PubMed  Google Scholar 

  36. Gaffney PM, Kearns GM, Shark KB, Ortmann WA, Selby SA, Malmgren ML et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Proc Natl Acad Sci USA 1998; 95: 14875–14879.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gaffney PM, Moser KL, Graham RR, Behrens TW . Recent advances in the genetics of systemic lupus erythematosus. Rheum Dis Clin N Am 2002; 28: 111–126.

    Google Scholar 

  38. Gray-McGuire C, Moser KL, Gaffney PM, Kelly J, Yu H, Olson JM et al. Genome scan of human systemic lupus erythematosus by regression modeling: evidence of linkage and epistasis at 4p16–15.2. Am J Hum Genet 2000; 67: 1460–1469.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Johanneson B, Lima G, von Salome J, Alarcon-Segovia D, Alarcon-Riquelme ME . A major susceptibility locus for systemic lupus erythemathosus maps to chromosome 1q31. Am J Hum Genet 2002; 71: 1060–1071.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lindqvist AK, Steinsson K, Johanneson B, Kristjansdottir H, Arnasson A, Grondal G et al. A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q. J Autoimmun 2000; 14: 169–178.

    CAS  PubMed  Google Scholar 

  41. Moser KL, Neas BR, Salmon JE, Yu H, Gray-McGuire C, Asundi N et al. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees. Proc Natl Acad Sci USA 1998; 95: 14869–14874.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nath SK, Quintero-Del-Rio AI, Kilpatrick J, Feo L, Ballesteros M, Harley JB . Linkage at 12q24 with systemic lupus erythematosus (SLE) is established and confirmed in Hispanic and European American families. Am J Hum Genet 2004; 74: 73–82.

    CAS  PubMed  Google Scholar 

  43. Johansson CM, Zunec R, Garcia MA, Scherbarth HR, Tate GA, Paira S et al. Chromosome 17p12–q11 harbors susceptibility loci for systemic lupus erythematosus. Hum Genet 2004; 115: 230–238.

    CAS  PubMed  Google Scholar 

  44. Tsao BP . Lupus susceptibility genes on human chromosome 1. Int Rev Immunol 2000; 19: 319–334.

    CAS  PubMed  Google Scholar 

  45. Tsao BP, Grossman JM, Riemekasten G, Strong N, Kalsi J, Wallace DJ et al. Familiality and co-occurrence of clinical features of systemic lupus erythematosus. Arthritis Rheum 2002; 46: 2678–2685.

    PubMed  Google Scholar 

  46. Rao S, Olson JM, Moser KL, Gray-McGuire C, Bruner GR, Kelly J et al. Linkage analysis of human systemic lupus erythematosus-related traits: a principal component approach. Arthritis Rheum 2001; 44: 2807–2818.

    CAS  PubMed  Google Scholar 

  47. Shai R, Quismorio Jr FP, Li L, Kwon OJ, Morrison J, Wallace DJ et al. Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families. Hum Mol Genet 1999; 8: 639–644.

    CAS  PubMed  Google Scholar 

  48. Cantor RM, Yuan J, Napier S, Kono N, Grossman JM, Hahn BH et al. Systemic lupus erythematosus genome scan: support for linkage at 1q23, 2q33, 16q12–13, and 17q21–23 and novel evidence at 3p24, 10q23–24, 13q32, and 18q22–23. Arthritis Rheum 2004; 50: 3203–3210.

    CAS  PubMed  Google Scholar 

  49. Gaffney PM, Ortmann WA, Selby SA, Shark KB, Ockenden TC, Rohlf KE et al. Genome screening in human systemic lupus erythematosus: results from a second Minnesota cohort and combined analyses of 187 sib-pair families. Am J Hum Genet 2000; 66: 547–556.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Koskenmies S, Lahermo P, Julkunen H, Ollikainen V, Kere J, Widen E . Linkage mapping of systemic lupus erythematosus (SLE) in Finnish families multiply affected by SLE. J Med Genet 2004; 41: e2–e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nath SK, Namjou B, Hutchings D, Garriott CP, Pongratz C, Guthridge J et al. Systemic lupus erythematosus (SLE) and chromosome 16: confirmation of linkage to 16q12–13 and evidence for genetic heterogeneity. Eur J Hum Genet 2004; 12: 668–672.

    CAS  PubMed  Google Scholar 

  52. Xing C, Gray-McGuire C, Kelly JA, Garriott P, Bukulmez H, Harley JB et al. Genetic linkage of systemic lupus erythematosus to 13q32 in African American families with affected male members. Hum Genet 2005; 118: 309–321.

    CAS  PubMed  Google Scholar 

  53. Kelly JA, Thompson K, Kilpatrick J, Lam T, Nath SK, Gray-McGuire C et al. Evidence for a susceptibility gene (SLEH1) on chromosome 11q14 for systemic lupus erythematosus (SLE) families with hemolytic anemia. Proc Natl Acad Sci USA 2002; 99: 11766–11771.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Namjou B, Kelly JA, Kilpatrick J, Kaufman KM, Nath SK, Scofield RH et al. Linkage at 5q14.3–15 in multiplex systemic lupus erythematosus pedigrees stratified by autoimmune thyroid disease. Arthritis Rheum 2005; 52: 3646–3650.

    CAS  PubMed  Google Scholar 

  55. Namjou B, Nath SK, Kilpatrick J, Kelly JA, Reid J, James JA et al. Stratification of pedigrees multiplex for systemic lupus erythematosus and for self-reported rheumatoid arthritis detects a systemic lupus erythematosus susceptibility gene (SLER1) at 5p15.3. Arthritis Rheum 2002; 46: 2937–2945.

    CAS  PubMed  Google Scholar 

  56. Namjou B, Nath SK, Kilpatrick J, Kelly JA, Reid J, Reichlin M et al. Genome scan stratified by the presence of anti-double-stranded DNA (dsDNA) autoantibody in pedigrees multiplex for systemic lupus erythematosus (SLE) establishes linkages at 19p13.2 (SLED1) and 18q21.1 (SLED2). Genes Immun 2002; 3 (Suppl 1): S35–S41.

    CAS  PubMed  Google Scholar 

  57. Nath SK, Kelly JA, Namjou B, Lam T, Bruner GR, Scofield RH et al. Evidence for a susceptibility gene, SLEV1, on chromosome 17p13 in families with vitiligo-related systemic lupus erythematosus. Am J Hum Genet 2001; 69: 1401–1406.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nath SK, Namjou B, Garriott CP, Frank S, Joslin PA, Kilpatrick J et al. Linkage analysis of SLE susceptibility: confirmation of SLER1 at 5p15.3. Genes Immun 2004; 5: 209–214.

    CAS  PubMed  Google Scholar 

  59. Nath SK, Namjou B, Kilpatrick J, Garriott CP, Bruner GR, Scofield RH et al. A candidate region on 11p13 for systemic lupus erythematosus: a linkage identified in African-American families. J Investig Dermatol Symp Proc 2004; 9: 64–67.

    PubMed  Google Scholar 

  60. Quintero-del-Rio AI, Kelly JA, Garriott CP, Hutchings DC, Frank SG, Aston CE et al. SLEN2 (2q34–35) and SLEN1 (10q22.3) replication in systemic lupus erythematosus stratified by nephritis. Am J Hum Genet 2004; 75: 346–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Quintero-Del-Rio AI, Kelly JA, Kilpatrick J, James JA, Harley JB . The genetics of systemic lupus erythematosus stratified by renal disease: linkage at 10q22.3 (SLEN1), 2q34–35 (SLEN2), and 11p15.6 (SLEN3). Genes Immun 2002; 3 (Suppl 1): S57–S62.

    CAS  PubMed  Google Scholar 

  62. Sawalha AH, Namjou B, Nath SK, Kilpatrick J, Germundson A, Kelly JA et al. Genetic linkage of systemic lupus erythematosus with chromosome 11q14 (SLEH1) in African-American families stratified by a nucleolar antinuclear antibody pattern. Genes Immun 2002; 3 (Suppl 1): S31–S34.

    CAS  PubMed  Google Scholar 

  63. Scofield RH, Bruner GR, Kelly JA, Kilpatrick J, Bacino D, Nath SK et al. Thrombocytopenia identifies a severe familial phenotype of systemic lupus erythematosus and reveals genetic linkages at 1q22 and 11p13. Blood 2003; 101: 992–997.

    CAS  PubMed  Google Scholar 

  64. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 2003; 349: 1526–1533.

    CAS  PubMed  Google Scholar 

  65. Arbuckle MR, Reichlin M, Harley JB, James JA . Shared early autoantibody recognition events in the development of anti-Sm B/B′ in human lupus. Scand J Immunol 1999; 50: 447–455.

    CAS  PubMed  Google Scholar 

  66. McClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, James JA . Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med 2005; 11: 85–89.

    CAS  PubMed  Google Scholar 

  67. Schur P, Schmerling R . Laboratory tests in rheumatic disorders. In: Hochberg M, Silman A, Smolen J, Weinblatt M, Weisman M (eds). Rheumatology, vol. 1. Mosby: Edinburgh, 2003, pp 199–213.

  68. Giles I, Isenberg D . Antinuclear antibodies: an overview. In: Wallace DL, Hahn BH (eds). Dubois’ Lupus Erythematosus. Lippincott Williams & Wilkins: Philadelphia, 2002, p 418.

    Google Scholar 

  69. Spadaro A, Rinaldi T, Riccieri V, Taccari E, Valesini G . Interleukin-13 in autoimmune rheumatic diseases: relationship with the autoantibody profile. Clin Exp Rheumatol 2002; 20: 213–216.

    CAS  PubMed  Google Scholar 

  70. Yee CS, Hussein H, Skan J, Bowman S, Situnayake D, Gordon C . Association of damage with autoantibody profile, age, race, sex and disease duration in systemic lupus erythematosus. Rheumatology 2003; 42: 276–279.

    CAS  PubMed  Google Scholar 

  71. Tan EM, Feltkamp TE, Smolen JS, Butcher B, Dawkins R, Fritzler MJ et al. Range of antinuclear antibodies in ‘healthy’ individuals. Arthritis Rheum 1997; 40: 1601–1611.

    CAS  PubMed  Google Scholar 

  72. Quintero-Del-Rio AI, Bacino D, Kelly J, Aberle T, Harley JB . Familial systemic lupus erythematosus: a comparison of clinical manifestations and antibody presentation in three ethnic groups. Cell Mol Biol (Noisy-le-grand) 2001; 47: 1223–1227.

    CAS  Google Scholar 

  73. Olson JM, Witte JS, Elston RC . Association within twin pairs for a dichotomous trait. Genet Epidemiol 1996; 13: 489–499.

    CAS  PubMed  Google Scholar 

  74. Elston RC, Buxbaum S, Jacobs KB, Olson JM . Haseman and Elston revisited. Genet Epidemiol 2000; 19: 1–17.

    CAS  PubMed  Google Scholar 

  75. Craft J, Mimori T, Olsen TL, Hardin JA . The U2 small nuclear ribonucleoprotein particle as an autoantigen. Analysis with sera from patients with overlap syndromes. J Clin Invest 1988; 81: 1716–1724.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Boire G, Craft J . Human Ro ribonucleoprotein particles: characterization of native structure and stable association with the La polypeptide. J Clin Invest 1990; 85: 1182–1190.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lippman SM, Arnett FC, Conley CL, Ness PM, Meyers DA, Bias WB . Genetic factors predisposing to autoimmune diseases. Autoimmune hemolytic anemia, chronic thrombocytopenic purpura, and systemic lupus erythematosus. Am J Med 1982; 73: 827–840.

    CAS  PubMed  Google Scholar 

  78. Bias WB, Reveille JD, Beaty TH, Meyers DA, Arnett FC . Evidence that autoimmunity in man is a Mendelian dominant trait. Am J Hum Genet 1986; 39: 584–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hahn BH . An overview of the pathogenesis of systemic lupus erythematosus. In: DJ Wallace BH (ed). Dubois’ Lupus Erythematosus. Lippincott Williams & Wilkins: Philadelphia, 2002, pp 87–96.

    Google Scholar 

  80. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 2003; 100: 2610–2615.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. van der Linden MW, Westendorp RG, Zidane M, Meheus L, Huizinga TW . Autoantibodies within families of patients with systemic lupus erythematosus are not directed against the same nuclear antigens. J Rheumatol 2001; 28: 284–287.

    CAS  PubMed  Google Scholar 

  82. Corporaal S, Bijl M, Kallenberg CG . Familial occurrence of autoimmune diseases and autoantibodies in a Caucasian population of patients with systemic lupus erythematosus. Clin Rheumatol 2002; 21: 108–113.

    CAS  PubMed  Google Scholar 

  83. Reichlin M, Harley JB, Lockshin MD . Serologic studies of monozygotic twins with systemic lupus erythematosus. Arthritis Rheum 1992; 35: 457–464.

    CAS  PubMed  Google Scholar 

  84. Cornelis F, Faure S, Martinez M, Prud’homme JF, Fritz P, Dib C et al. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc Natl Acad Sci USA 1998; 95: 10746–10750.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Samuelsson L, Enlund F, Torinsson A, Yhr M, Inerot A, Enerback C et al. A genome-wide search for genes predisposing to familial psoriasis by using a stratification approach. Hum Genet 1999; 105: 523–529.

    CAS  PubMed  Google Scholar 

  86. Enlund F, Samuelsson L, Enerback C, Inerot A, Wahlstrom J, Yhr M et al. Psoriasis susceptibility locus in chromosome region 3q21 identified in patients from southwest Sweden. Eur J Hum Genet 1999; 7: 783–790.

    CAS  PubMed  Google Scholar 

  87. Ebers GC, Kukay K, Bulman DE, Sadovnick AD, Rice G, Anderson C et al. A full genome search in multiple sclerosis. Nat Genet 1996; 13: 472–476.

    CAS  PubMed  Google Scholar 

  88. Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ, Pritchard LE et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 1994; 371: 130–136.

    CAS  PubMed  Google Scholar 

  89. Paterson AD, Petronis A . Sex of affected sibpairs and genetic linkage to type 1 diabetes. Am J Med Genet 1999; 84: 15–19.

    CAS  PubMed  Google Scholar 

  90. Mein CA, Esposito L, Dunn MG, Johnson GC, Timms AE, Goy JV et al. A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Nat Genet 1998; 19: 297–300.

    CAS  PubMed  Google Scholar 

  91. Otsuka J, Horiuchi T, Yoshizawa S, Tsukamoto H, Sawabe T, Kikuchi Y et al. Association of a four-amino acid residue insertion polymorphism of the HS1 gene with systemic lupus erythematosus: molecular and functional analysis. Arthritis Rheum 2004; 50: 871–881.

    CAS  PubMed  Google Scholar 

  92. Cho JH, Nicolae DL, Gold LH, Fields CT, LaBuda MC, Rohal PM et al. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1. Proc Natl Acad Sci USA 1998; 95: 7502–7507.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ban Y, Davies TF, Greenberg DA, Concepcion ES, Tomer Y . The influence of human leucocyte antigen (HLA) genes on autoimmune thyroid disease (AITD): results of studies in HLA-DR3 positive AITD families. Clin Endocrinol (Oxford) 2002; 57: 81–88.

    CAS  Google Scholar 

  94. Mitsiades N, Poulaki V, Mitsiades CS, Koutras DA, Chrousos GP . Apoptosis induced by FasL and TRAIL/Apo2L in the pathogenesis of thyroid diseases. Trends Endocrinol Metab 2001; 12: 384–390.

    CAS  PubMed  Google Scholar 

  95. Matsumura R, Umemiya K, Kagami M, Tomioka H, Tanabe E, Sugiyama T et al. Expression of TNF-related apoptosis inducing ligand (TRAIL) on infiltrating cells and of TRAIL receptors on salivary glands in patients with Sjogren's syndrome. Clin Exp Rheumatol 2002; 20: 791–798.

    CAS  PubMed  Google Scholar 

  96. Tsai HF, Lai JJ, Chou AH, Wang TF, Wu CS, Hsu PN . Induction of costimulation of human CD4T cells by tumor necrosis factor-related apoptosis-inducing ligand: possible role in T cell activation in systemic lupus erythematosus. Arthritis Rheum 2004; 50: 629–639.

    CAS  PubMed  Google Scholar 

  97. Lub-de Hooge MN, de Vries EG, de Jong S, Bijl M . Soluble TRAIL concentrations are raised in patients with systemic lupus erythematosus. Ann Rheum Dis 2005; 64: 854–858.

    CAS  PubMed  Google Scholar 

  98. Kikuchi S, Miyagishi R, Fukazawa T, Yabe I, Miyazaki Y, Sasaki H . TNF-related apoptosis inducing ligand (TRAIL) gene polymorphism in Japanese patients with multiple sclerosis. J Neuroimmunol 2005; 167: 170–174.

    CAS  PubMed  Google Scholar 

  99. Ohno H . Pathogenetic role of BCL6 translocation in B-cell non-Hodgkin's lymphoma. Histol Histopathol 2004; 19: 637–650.

    CAS  PubMed  Google Scholar 

  100. Nerup J, Pociot F . A genomewide scan for type 1-diabetes susceptibility in Scandinavian families: identification of new loci with evidence of interactions. Am J Hum Genet 2001; 69: 1301–1313.

    CAS  PubMed  Google Scholar 

  101. van Everdink WJ, Baranova A, Lummen C, Tyazhelova T, Looman MW, Ivanov D et al. RFP2, c13ORF1, and FAM10A4 are the most likely tumor suppressor gene candidates for B-cell chronic lymphocytic leukemia. Cancer Genet Cytogenet 2003; 146: 48–57.

    CAS  PubMed  Google Scholar 

  102. Matthews D, Fry L, Powles A, Weber J, McCarthy M, Fisher E et al. Evidence that a locus for familial psoriasis maps to chromosome 4q. Nat Genet 1996; 14: 231–233.

    CAS  PubMed  Google Scholar 

  103. Laaksonen M, Jonasdottir A, Fossdal R, Ruutiainen J, Sawcer S, Compston A et al. A whole genome association study in Finnish multiple sclerosis patients with 3669 markers. J Neuroimmunol 2003; 143: 70–73.

    CAS  PubMed  Google Scholar 

  104. Foerster J, Nolte I, Schweiger S, Ehlert C, Bruinenberg M, Spaar K et al. Evaluation of the IRF-2 gene as a candidate for PSORS3. J Invest Dermatol 2004; 122: 61–64.

    CAS  PubMed  Google Scholar 

  105. Nishio Y, Noguchi E, Ito S, Ichikawa E, Umebayashi Y, Otsuka F et al. Mutation and association analysis of the interferon regulatory factor 2 gene (IRF2) with atopic dermatitis. J Hum Genet 2001; 46: 664–667.

    CAS  PubMed  Google Scholar 

  106. Harada H, Fujita T, Miyamoto M, Kimura Y, Maruyama M, Furia A et al. Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell 1989; 58: 729–739.

    CAS  PubMed  Google Scholar 

  107. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N . IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 2001; 19: 623–655.

    CAS  PubMed  Google Scholar 

  108. Hida S, Ogasawara K, Sato K, Abe M, Takayanagi H, Yokochi T et al. CD8(+) T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-alpha/beta signaling. Immunity 2000; 13: 643–655.

    CAS  PubMed  Google Scholar 

  109. Lew W, Lee E, Krueger JG . Psoriasis genomics: analysis of proinflammatory (type 1) gene expression in large plaque (Western) and small plaque (Asian) psoriasis vulgaris. Br J Dermatol 2004; 150: 668–676.

    CAS  PubMed  Google Scholar 

  110. Gu J, Rihl M, Marker-Hermann E, Baeten D, Kuipers JG, Song YW et al. Clues to pathogenesis of spondyloarthropathy derived from synovial fluid mononuclear cell gene expression profiles. J Rheumatol 2002; 29: 2159–2164.

    CAS  PubMed  Google Scholar 

  111. Kemp EH, Metcalfe RA, Smith KA, Woodroofe MN, Watson PF, Weetman AP . Detection and localization of chemokine gene expression in autoimmune thyroid disease. Clin Endocrinol (Oxford) 2003; 59: 207–213.

    CAS  Google Scholar 

  112. Stallmach A, Giese T, Schmidt C, Ludwig B, Mueller-Molaian I, Meuer SC . Cytokine/chemokine transcript profiles reflect mucosal inflammation in Crohn's disease. Int J Colorectal Dis 2004; 19: 308–315.

    PubMed  Google Scholar 

  113. Sigurdsson S, Nordmark G, Goring HH, Lindroos K, Wiman AC, Sturfelt G et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 2005; 76: 528–537.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Crow MK, Kirou KA, Wohlgemuth J . Microarray analysis of interferon-regulated genes in SLE. Autoimmunity 2003; 36: 481–490.

    CAS  PubMed  Google Scholar 

  115. Mok CC, Lau CS . Pathogenesis of systemic lupus erythematosus. J Clin Pathol 2003; 56: 481–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Graham RR, Ortmann WA, Langefeld CD, Jawaheer D, Selby SA, Rodine PR et al. Visualizing human leukocyte antigen class II risk haplotypes in human systemic lupus erythematosus. Am J Hum Genet 2002; 71: 543–553.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Jawaheer D, Li W, Graham RR, Chen W, Damle A, Xiao X et al. Dissecting the genetic complexity of the association between human leukocyte antigens and rheumatoid arthritis. Am J Hum Genet 2002; 71: 585–594.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Clark GM, Reichlin M, Tomasi TB . Characterization of a soluble cytoplasmic antigen reactive with sera from patients with systemic lupus erythematosus. J Immunol 1968; 102: 117–122.

    Google Scholar 

  119. Harris EN, Gharavi AE, Patel SP, Hughes GR . Evaluation of the anti-cardiolipin antibody test: report of an international workshop held 4 April 1986. Clin Exp Immunol 1987; 68: 215–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Johnson RA, Wichern DW . Principal Components: Applied Multivariate Statistical Analysis. Prentice-Hall: Upper Saddle River, 1999, pp 458–459.

    Google Scholar 

Download references

Acknowledgements

We thank the families and their referring physicians for their participation in this study. We gratefully acknowledge Dr Jane Olson for making a substantial contribution to the study design and statistical analyses, as well as insightful discussions. Some of the results in this report were obtained using the program package SAGE, which is supported by a US Public Health Service Resource Grant (RR03655) from the National Center for Research Resources. Some pedigrees (cohorts A, B, C and D) were obtained from the Lupus Multiplex Registry and Repository (http://omrf.ouhsc.edu/lupus), supported by NIH contract N01 AR12253. PSR was supported by a fellowship from the Fundação para a Ciência e Tecnologia (SFRH/BD/1090/2000). This study was supported by NIH Grants AI24717, AI31584, AI053747, AR42460, AR048940, RR020143 (to JBH) and AR46405 (to KLM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K L Moser.

Additional information

URLS

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/Omim

Statistical Analysis for Genetic Epidemiology (SAGE) software, http://darwin.cwru.edu/sage/index.php

StatView software for Windows version 5.0, Cary, NC, http://www.statview.com

GraphPad Instat software version 3.0 for Windows XP, San Diego, CA, http://www.graphpad.com

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, P., Kelly, J., Gray-McGuire, C. et al. Familial aggregation and linkage analysis of autoantibody traits in pedigrees multiplex for systemic lupus erythematosus. Genes Immun 7, 417–432 (2006). https://doi.org/10.1038/sj.gene.6364316

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364316

Keywords

This article is cited by

Search

Quick links