Skip to main content

Advertisement

Log in

Determining Important Parameters in the Spread of Malaria Through the Sensitivity Analysis of a Mathematical Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We perform sensitivity analyses on a mathematical model of malaria transmission to determine the relative importance of model parameters to disease transmission and prevalence. We compile two sets of baseline parameter values: one for areas of high transmission and one for low transmission. We compute sensitivity indices of the reproductive number (which measures initial disease transmission) and the endemic equilibrium point (which measures disease prevalence) to the parameters at the baseline values. We find that in areas of low transmission, the reproductive number and the equilibrium proportion of infectious humans are most sensitive to the mosquito biting rate. In areas of high transmission, the reproductive number is again most sensitive to the mosquito biting rate, but the equilibrium proportion of infectious humans is most sensitive to the human recovery rate. This suggests strategies that target the mosquito biting rate (such as the use of insecticide-treated bed nets and indoor residual spraying) and those that target the human recovery rate (such as the prompt diagnosis and treatment of infectious individuals) can be successful in controlling malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, R.M., May, R.M., 1991. Infectious Diseases of Humans: Dynamics and Control . Oxford University Press, London.

    Google Scholar 

  • Aron, J.L., 1988. Mathematical modeling of immunity to malaria. Math. Biosci. 90, 385–96.

    Article  MATH  MathSciNet  Google Scholar 

  • Arudo, J., Gimnig, J.E., ter Kuile, F.O., Kachur, S.P., Slutsker, L., Kolczak, M.S., Hawley, W.A., Orago, A.S.S., Nahlen, B.L., Phillips-Howard, P.A., 2003. Comparison of government statistics and demographic surveillance to monitor mortality in children less than five years old in rural western Kenya. Am. J. Trop. Med. Hyg. 68 (Suppl. 4), 30–7.

    Google Scholar 

  • Baker, J.R., 1966. Parasitic Protozoa. Hutchinson.

  • Bloland, P.B., Williams, H.A., Roundtable on the Demography of Forced Migration, and Joseph L. Mailman School of Public Health. Program on Forced Migration and Health 2002 Malaria Control During Mass Population Movements and Natural Disasters. National Academies Press.

  • Boyd, M.F., 1949. Epidemiology: Factors related to the definitive host. In: Boyd, M.F. (Ed.), Malariology, vol. 1, pp. 608–97. Saunders, Philadelphia.

    Google Scholar 

  • Briët, O.J.T., 2002. A simple method for calculating mosquito mortality rates, correcting for seasonal variations in recruitment. Med. Vet. Entomol. 16, 22–7.

    Article  Google Scholar 

  • Central Intelligence Agency, CIA—The World Factbook, 2007. https://www.cia.gov/library/publications/the-world-factbook/index.html.

  • Chitnis, N., 2005. Using mathematical models in controlling the spread of malaria. Ph.D. thesis, University of Arizona, Tucson, Arizona, USA.

  • Chitnis, N., Cushing, J.M., Hyman, J.M., 2006. Bifurcation analysis of a mathematical model for malaria transmission. SIAM J. Appl. Math. 67, 24–5.

    Article  MATH  MathSciNet  Google Scholar 

  • Davidson, G., Draper, C.C., 1953. Field study of some of the basic factors concerned in the transmission of malaria. Trans. Roy. Soc. Trop. Med. Hyg. 47, 522–35.

    Article  Google Scholar 

  • Deloron, P., Chougnet, C., 1992. Is immunity to malaria really short-lived? Parasitol. Today 8, 375–78.

    Article  Google Scholar 

  • Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J., 1990. On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–82.

    Article  MATH  MathSciNet  Google Scholar 

  • Dietz, K., Molineaux, L., Thomas, A., 1974. A malaria model tested in the African Savannah. Bull. World Health Organ. 50, 347–57.

    Google Scholar 

  • Draper, C.C., 1953. Observations on the infectiousness of gametocytes in hyperendemic malaria. Trans. Roy. Soc. Trop. Med. Hyg. 47, 160–65.

    Article  Google Scholar 

  • Garrett-Jones, C., Grab, B., 1964. The assessment of insecticidal impact on the malaria mosquito’s vectorial capacity, from data on the population of parous females. Bull. World Health Organ. 31, 71–6.

    Google Scholar 

  • Garrett-Jones, C., Shidrawi, G.R., 1969. Malaria vectorial capacity of a population of Anopheles gambiae. Bull. World Health Organ. 40, 531–45.

    Google Scholar 

  • Gillies, M.T., Wilkes, T.J., 1963. Observations on nulliparous and parous rates in a population of A. funestus in East Africa. Ann. Trop. Med. Parasitol. 57, 204–13.

    Google Scholar 

  • Gillies, M.T., Wilkes, T.J., 1965. A study of the age composition of populations of Anopheles gambiae Giles and A. funestus Giles in north-eastern Tanzania. Bull. Entomol. Res. 56, 237–62.

    Article  Google Scholar 

  • Gimnig, J.E., Kolczak, M.S., Hightower, A.W., Vulule, J.M., Schoute, E., Kamau, L., Phillips-Howard, P.A., ter Kuile, F.O., Nahlen, B.L., Hawley, W.A., 2003a. Effect of permethrin-treated bed nets on the spatial distribution of malaria vectors in western Kenya. Am. J. Trop. Med. Hyg. 68 (Suppl. 4), 115–20.

    Google Scholar 

  • Gimnig, J.E., et al., 2003b. Impact of permethrin-treated bed nets on entomologic indices in an area of intense year-round malaria transmission. Am. J. Trop. Med. Hyg. 68 (Suppl. 4), 16–2.

    Google Scholar 

  • Hawley, W.A., et al., 2003. Implications of the western Kenya permethrin-treated bed net study for policy, program implementation, and future research. Am. J. Trop. Med. Hyg. 68 (Suppl. 4), 168–73.

    Google Scholar 

  • Khan, A.Q., Talibi, S.A., 1972. Epidemiological assessment of malaria transmission in an endemic area of East Pakistan and the significance of congenital immunity. Bull. World Health Organ. 46, 783–92.

    Google Scholar 

  • Krafsur, E.S., Armstrong, J.C., 1978. An integrated view of entomological and parasitological observations on falciparum malaria in Gambela, Western Ethiopian Lowlands. Trans. Roy. Soc. Trop. Med. Hyg. 72, 348–56.

    Article  Google Scholar 

  • Krafsur, E.S., Garrett-Jones, C., 1977. The survival of Wuchereria infected Anopheles funestus Giles in north-eastern Tanzania. Trans. Roy. Soc. Trop. Med. Hyg. 71, 155–60.

    Article  Google Scholar 

  • Macdonald, G., 1957. The Epidemiology and Control of Malaria. Oxford University Press, London.

    Google Scholar 

  • Massaga, J.J., Kitua, A.Y., Lemnge, M.M., Akida, J.A., Malle, L.N., Rønn, A.M., Theander, T.G., Bygbjerg, I.C., 2003. Effect of intermittent treatment with amodiaquine on anaemia and malarial fevers in infants in Tanzania: a randomized placebo-controlled trial. Lancet 361, 1853–860.

    Article  Google Scholar 

  • Molineaux, L., Gramiccia, G., 1980. The Garki Project. World Health Organization.

  • Molineaux, L., Shidrawi, G.R., Clarke, J.L., Boulzaguet, J.R., Ashkar, T.S., 1979. Assessment of insecticidal impact on the malaria mosquito’s vectorial capacity, from data on the man-biting rate and age-composition. Bull. World Health Organ. 57, 265–74.

    Google Scholar 

  • Muirhead-Thomson, R.C., 1957. The malarial infectivity of an African village population to mosquitoes (Anopheles gambiae): A random xenodiagnostic survey. Am. J. Trop. Med. Hyg. 6, 971–79.

    Google Scholar 

  • Nedelman, J., 1984. Inoculation and recovery rates in the malaria model of Dietz, Molineaux and Thomas. Math. Biosci. 69, 209–33.

    Article  MATH  MathSciNet  Google Scholar 

  • Nedelman, J., 1985. Introductory review: Some new thoughts about some old malaria models. Math. Biosci. 73, 159–82.

    Article  MATH  MathSciNet  Google Scholar 

  • Ngwa, G.A., Shu, W.S., 2000. A mathematical model for endemic malaria with variable human and mosquito populations. Math. Comput. Model. 32, 747–63.

    Article  MATH  MathSciNet  Google Scholar 

  • Oaks Jr., S.C., Mitchell, V.S., Pearson, G.W., Carpenter, C.C.J. (eds.) 1991. Malaria: Obstacles and Opportunities. National Academy Press.

  • Peters, W., Standfast, H.A., 1960. Studies on the epidemiology of malaria in New Guinea. II. Holoendemic malaria, the entomological picture. Trans. Roy. Soc. Trop. Med. Hyg. 54, 249–60.

    Article  Google Scholar 

  • Pull, J.H., Grab, B., 1974. A simple epidemiological model for evaluating the malaria inoculation rate and the risk of infection in infants. Bull. World Health Organ. 51, 507–16.

    Google Scholar 

  • Roll Back Malaria Partnership, 2005. RBM World Malaria Report 2005. http://rbm.who.int/wmr2005/index.html.

  • Ross, R., 1911. The Prevention of Malaria, 2 edn. Murray, London.

    Google Scholar 

  • Schellenberg, D., Menendez, C., Kahigwa, E., Aponte, J., Vidal, J., Tanner, M., Mshinda, H., Alonso, P., 2001. Intermittent treatment for malaria and anaemia control at time of routine vaccinations in Tanzanian infants: a randomized, placebo-controlled trial. Lancet 357, 1471–477.

    Article  Google Scholar 

  • Sharma, S.N., Shukla, R.P., Raghavendra, K., Subbarao, S.K., 2005. Impact of DDT spraying on malaria transmission in Bareilly District, Uttar Pradesh, India. J. Vector Borne Dis. 42, 54–0.

    Google Scholar 

  • Slooff, R., Verdrager, J., 1972. Anopheles balabacensis Baisas 1936 and malaria transmission in south-eastern areas of Asia. WHO/MAL/72.765.

  • Smalley, M.E., Sinden, R.E., 1977. Plasmodium falciparum gametocytes: Their longevity and infectivity. Parasitology 74, 1–.

    Article  Google Scholar 

  • Zahar, A.R., 1974. Review of the ecology of malaria vectors in the WHO Eastern 4Mediterranean region. Bull. World Health Organ. 50, 427–40.

    Google Scholar 

  • Zhou, G., Minakawa, N., Githeko, A.K., Yan, G., 2004. Association between climate variability and malaria epidemics in the East African highlands. Proc. Nat. Acad. Sci. USA 101, 2375–380.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nakul Chitnis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chitnis, N., Hyman, J.M. & Cushing, J.M. Determining Important Parameters in the Spread of Malaria Through the Sensitivity Analysis of a Mathematical Model. Bull. Math. Biol. 70, 1272–1296 (2008). https://doi.org/10.1007/s11538-008-9299-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9299-0

Keywords

Navigation