Skip to main content

Advertisement

Log in

A Stochastic Population Dynamics Model for Aedes Aegypti: Formulation and Application to a City with Temperate Climate

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Aedes aegypti is the main vector for dengue and urban yellow fever. It is extended around the world not only in the tropical regions but also beyond them, reaching temperate climates. Because of its importance as a vector of deadly diseases, the significance of its distribution in urban areas and the possibility of breeding in laboratory facilities, Aedes aegypti is one of the best-known mosquitoes. In this work the biology of Aedes aegypti is incorporated into the framework of a stochastic population dynamics model able to handle seasonal and total extinction as well as endemic situations. The model incorporates explicitly the dependence with temperature. The ecological parameters of the model are tuned to the present populations of Aedes aegypti in Buenos Aires city, which is at the border of the present day geographical distribution in South America. Temperature thresholds for the mosquito survival are computed as a function of average yearly temperature and seasonal variation as well as breeding site availability. The stochastic analysis suggests that the southern limit of Aedes aegypti distribution in South America is close to the 15^∘C average yearly isotherm, which accounts for the historical and current distribution better than the traditional criterion of the winter (July) 10°C isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersson, H., Britton, T., 2000. Stochastic epidemic models and their statistical analysis. Volume 151 of Lecture Notes in Statistics. Springer-Verlag, Berlin.

  • Aparicio, J.P., Solari, H.G., 2001. Population dynamics: A poissonian approximation and its relation to the langevin process. Phys. Rev. Lett. 86, 4183–4186.

    Article  Google Scholar 

  • Arrivillaga, J., Barrera, R., 2004. Food as a limiting factor for aedes aegypti in water-storage containers. J. Vector Ecol. 29, 11–20.

    Google Scholar 

  • Bar-Zeev, M., 1957. The effect of density on the larvae of a mosquito and its influence on fecundity. Bull. Res. Council Israel 6B, 220–228.

    Google Scholar 

  • Bar-Zeev, M., 1958. The effect of temperature on the growth rate and survival of the immature stages of aedes aegypti. Bull. Entomol. Res. 49, 157–163.

    Article  Google Scholar 

  • Campos, R.E., Macia, A., 1996. Observaciones biologicas de una poblacion natural de aedes aegypti (diptera: culicidae) en la provincia de buenos aires, argentina. Rev. Soc. Entomol. Argent. 55(1–4), 67–72.

    Google Scholar 

  • Carbajo, A.E., Schweigmann, N., Curto, S.I., de Garín, A., Bejarán, R., 2001. Dengue transmission risk maps of argentina. Trop. Med. Int. Health 6(3), 170–183.

    Google Scholar 

  • Carter, H.R., 1931. Yellow Fever: An Epidemiological and Historical Study of Its Place of Origin. The Williams & Wilkins Company, Baltimore.

  • Christophers, R., 1960. Aedes aegypti (L.), The Yellow Fever Mosquito. Cambridge Univ. Press., Cambridge.

  • de Garín, A.B., Bejarán, R.A., Carbajo, A.E., de Casas, S.C., Schweigmann, N.J., 2000. Atmospheric control of aedes aegypti populations in buenos aires (argentina) and its variability. Int. J. Biometerol. 44, 148–156.

    Article  Google Scholar 

  • Depinay, J.-M.O., Mbogo, C.M., Killeen, G., Knols, B., Beier, J., Carlson, J., Dushoff, J., Billingsley, P., Mwambi, H., Githure, J., Toure, A.M., McKenzie, F.E., 2004. A simulation model of african anopheles ecology and population dynamics for the analysis of malaria transmision. Malaria J. 3(29), 1–21.

    Google Scholar 

  • Domínguez, C., Almeida, F.F.L., Almirón, W., 2000. Dinámica poblacional de aedes aegypti (diptera: Culicidae) en córdoba capital. Revista de la Sociedad Entomológica de Argentina 59, 41–50.

    Google Scholar 

  • Dye, C., 1982. Intraspecific competition amongst larval aedes aegypti: Food exploitation or chemical interference. Ecol. Entomol. 7, 39–46.

    Google Scholar 

  • Ethier, S.N., Kurtz, T.G., 1986. Markov Processes. John Wiley and Sons, New York.

  • Fay, R.W., 1964. The biology and bionomics of aedes aegypti in the laboratory. Mosq. News. 24, 300–308.

    Google Scholar 

  • Focks, D.A., Haile, D.C., Daniels, E., Moun, G.A., 1993a. Dynamics life table model for aedes aegypti: Analysis of the literature and model development. J. Med. Entomol. 30, 1003–1018.

    Google Scholar 

  • Focks, D.A., Haile, D.C., Daniels, E., Mount, G.A., 1993b. Dynamic life table model for aedes aegypti: Simulations results. J. Med. Entomol. 30, 1019–1029.

    Google Scholar 

  • FUNCEI, 1998. Dengue enfermedad emergente. Fundación de estudios infectológicos 1(1), 1–6, http://www.funcei.org.ar.

  • FUNCEI, 1999a. Dengue enfermedad emergente. Fundación de estudios infectológicos 2(2), 1–8, http://www.funcei.org.ar.

  • FUNCEI, 1999b. Dengue enfermedad emergente. Fundación de estudios infectológicos 2(1), 1–12, http://www.funcei.org.ar.

  • Gleiser, R.M., Urrutia, J., Gorla, D.E., 2000. Effects of crowding on populations of aedes albifasciatus larvae under laboratory conditions. Entomologia Experimentalis et Applicata 95, 135–140.

    Article  Google Scholar 

  • Hill, G.W., 1877. On the part of motion of the lunar perigee which is function of the mean motions of the sun and moon. Acta Math. 8, 1.

    Google Scholar 

  • Horsfall, W.R., 1955. Mosquitoes: Their Bionomics and Relation to Disease. Ronald, New York, USA.

  • Király, A., Jánosi, I. M., 2002. Stochastic modelling of daily temperature fluctuations. Phys. Rev. E 65, 051102.

    Google Scholar 

  • Kurtz, T.G., 1970. Solutions of ordinary differential equations as limits of pure jump markov processes. J. Appl. Prob. 7, 49–58.

    Article  MATH  MathSciNet  Google Scholar 

  • Kurtz, T.G., 1971. Limit theorems for sequences of jump processes approximating ordinary differential equations. J. Appl. Prob. 8, 344–356.

    Article  MATH  MathSciNet  Google Scholar 

  • Legates, D.R., Willmott, C.J., 1990. Mean seasonal and spatial variability in global surface air temperature. Theor. Appl. Climatology 41, 11–21.

    Article  Google Scholar 

  • Livdahl, T.P., Koenekoop, R.K., Futterweit, S.G., 1984. The complex hatching response of aedes eggs to larval density. Ecol. Entomol. 9, 437–442.

    Google Scholar 

  • Ministerio de Asistencia Social y Salud Publica, A., 1964. Campaña de erradicacion del Aedes aegypti en la Republica Argentina. Informe final. Buenos Aires.

  • Morales, M.A., Monteros, M., Fabbri, C.M., Garay, M.E., Introini, V., Ubeid, M.C., Baroni, P.G., Rodriguez, C., Ranaivoarisoa, M.I., Lanfri, M., Scavuzzo, M., Gentile, A., Zaidemberg, M., Ripoll, C. M., Fernandez, H., Blanco, S., Enria, D.A., 2004. Riesgo de aparicin de dengue hemorrágico en la argentina. In: II Congreso Internacional Dengue y Fiebre Amarilla. La Habana, Cuba, http://www.cidfa2004.sld.cu.

  • Nayar, J.K., Sauerman, D.M., 1975. The effects of nutrition on survival and fecundity in florida mosquitoes. part 3. utilization of bood and sugar for fecundity. J. Med. Entomol. 12, 220–225.

    Google Scholar 

  • Perillo, G.M.E., Piccolo, M.C., 2004. quées el estuario de bahía blanca? Ciencia Hoy 14(81), 8–15, on line at http://www.ciencia-hoy.retina.ar.

    Google Scholar 

  • Powell, J.A., Jenkis, J.L., 2000. Seasonal temperature alone can synchronize life cycles. Bull. Math. Biol. 62, 977–998.

    Article  Google Scholar 

  • Rueda, L.M., Patel, K.J., Axtell, R.C., Stinner, R.E., 1990. Temperature-dependent development and survival rates of culex quinquefasciatus and aedes aegypti (diptera: Culicidae). J. Med. Entomol. 27, 892–898.

    Google Scholar 

  • Schoofield, R.M., Sharpe, P.J.H., Magnuson, C.E., 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88, 719–731.

    Article  Google Scholar 

  • Schuster, H.G., 1984. Deterministic Chaos. Physik Verlag, Weinheim.

  • Schweigmann, N., Boffi, R., 1998. Aedes aegypti y aedes albopictus: Situación entomológica en la región. In: Temas de Zoonosis y Enfermedades Emergentes, Segundo Cong. Argent. de Zoonosis y Primer Cong. Argent. y Lationoamer. de Enf. Emerg. y Asociación Argentina de Zoonosis. Buenos Aires, pp. 259–263.

  • Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64, 649–670.

    Article  Google Scholar 

  • Solari, H., Natiello, M., Mindlin, B., 1996. Nonlinear Dynamics: A Two-way Trip from Physics to Math. Institute of Physics, Bristol.

  • Solari, H., Natiello, M., 2003a. Poisson approximation to density dependent stochastic processes: A numerical implementation and test. In: Khrennikov, A. (Ed.), Mathematical Modelling in Physics, Engineering and Cognitive Sciences. Proceedings of the Workshop Dynamical Systems from Number Theory to Probability–2, vol. 6.Växjö University Press, Växjö, pp. 79–94.

  • Solari, H.G., Natiello, M.A., 2003b. Stochastic population dynamics: the poisson approximation. Phys. Rev. E 67, 031918.

    Google Scholar 

  • Southwood, T.R.E., Murdie, G., Yasuno, M., Tonn, R.J., Reader, P.M., 1972. Studies on the life budget of aedes aegypti in wat samphaya bangkok thailand. Bull. W.H.O. 46, 211–226.

    Google Scholar 

  • Subra, R., Mouchet, J., 1984. The regulation of preimaginal populations of aedes aegypti (l.) (diptera: Culicidae) on the kenya coast. ii. food as a main regulatory fa ctor. Ann. Trop. Med. Parasitol. 78, 63–70.

    Google Scholar 

  • Trpis, M., 1972. Dry season survival of aedes aegypti eggs in various breeding sites in the dar salaam area, tanzania. Bull. WHO 47, 433–437.

    Google Scholar 

  • Vezzani, C., Velázquez, S.T., Schweigmann, N., 2004. Seasonal pattern of abundance of aedes aegypti (diptera: Culicidae) in buenos aires city, argentina. Memor Inst Oswaldo Cruz 99, 351–356.

    Google Scholar 

  • WHO, 1998. Dengue Hemorrhagic Fever. Diagnosis, Treatment, Prevention and Control. World Health Organization, Ginebra, Suiza.

  • Wiggins, S., 1988. Global Bifurcations and Chaos. No. 73. Applied Mathematical Science.

  • Wiggins, S., 1990. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán G. Solari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otero, M., Solari, H.G. & Schweigmann, N. A Stochastic Population Dynamics Model for Aedes Aegypti: Formulation and Application to a City with Temperate Climate. Bull. Math. Biol. 68, 1945–1974 (2006). https://doi.org/10.1007/s11538-006-9067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9067-y

Keywords

Navigation