TY - JOUR T1 - Precision shielding for COVID-19: metrics of assessment and feasibility of deployment JF - BMJ Global Health JO - BMJ Global Health DO - 10.1136/bmjgh-2020-004614 VL - 6 IS - 1 SP - e004614 AU - John P A Ioannidis Y1 - 2021/01/01 UR - http://gh.bmj.com/content/6/1/e004614.abstract N2 - The ability to preferentially protect high-risk groups in COVID-19 is hotly debated. Here, the aim is to present simple metrics of such precision shielding of people at high risk of death after infection by SARS-CoV-2; demonstrate how they can estimated; and examine whether precision shielding was successfully achieved in the first COVID-19 wave. The shielding ratio, S, is defined as the ratio of prevalence of infection among people in a high-risk group versus among people in a low-risk group. The contrasted risk groups examined here are according to age (≥70 vs <70 years), and institutionalised (nursing home) setting. For age-related precision shielding, data were used from large seroprevalence studies with separate prevalence data for elderly versus non-elderly and with at least 1000 assessed people≥70 years old. For setting-related precision shielding, data were analysed from 10 countries where information was available on numbers of nursing home residents, proportion of nursing home residents among COVID-19 deaths and overall population infection fatality rate (IFR). Across 17 seroprevalence studies, the shielding ratio S for elderly versus non-elderly varied between 0.4 (substantial shielding) and 1.6 (substantial inverse protection, that is, low-risk people being protected more than high-risk people). Five studies in the USA all yielded S=0.4–0.8, consistent with some shielding being achieved, while two studies in China yielded S=1.5–1.6, consistent with inverse protection. Assuming 25% IFR among nursing home residents, S values for nursing home residents ranged from 0.07 to 3.1. The best shielding was seen in South Korea (S=0.07) and modest shielding was achieved in Israel, Slovenia, Germany and Denmark. No shielding was achieved in Hungary and Sweden. In Belgium (S=1.9), the UK (S=2.2) and Spain (S=3.1), nursing home residents were far more frequently infected than the rest of the population. In conclusion, the experience from the first wave of COVID-19 suggests that different locations and settings varied markedly in the extent to which they protected high-risk groups. Both effective precision shielding and detrimental inverse protection can happen in real-life circumstances. COVID-19 interventions should seek to achieve maximal precision shielding. ER -