Appendix 3: Supplementary results

Table S1 (Pages 1-2): Characteristics of the included global health journals

Table S2 (Pages 3-4): Changes of non-COVID-19 publications with ITSA analysis due to the pandemic from January 2018 to June 2022 in the included global health journals using Newey-West test

Figure S1 (Pages 5-7): Auto correlation plots with Cumby-Huizinga general test (up to lag order=6) for non-COVID-19 publications in the included global health journals (Figure S1 includes A-T)

Table S1 Characteristics of the included global health journals

Journal name	First year issued	Edition	Frequency (issues per year)	Country / Region	First electronic JCR year	h-index (2021)	JCI (2021)	Total citations (2021)	APC ^a	Overall hot papers ^d	COVID- 19-related hot papers	Overall highly cited papers ^e	COVID-19- related highly cited papers
								(')		Fro	m January 20	20 to June 2	022 (N)
Annals of Global Health	2014	SCIE	1	ENGLAND	2014	7	0.60	2312	1365 dollars	0	0	0	0
BMJ Global Health	2016	SSCI/SCIE	6	ENGLAND	2019	21	1.58	9641	3000 pounds	2	2	20	16
Bulletin of the World Health Organization	1947	SCIE	12	SWITZERLAND	1997	12	2.23	21791	No APC	1	1	8	5
Clinical Epidemiology and Global Health	2013	ESCI	3	INDIA	2020	18	0.51	1384	1200 dollars	0	0	0	0
Global Health Action	2008	SSCI/SCIE	1	ENGLAND	2011	8	0.78	5288	1582 dollars	0	0	1	1
Global Health Epidemiology and Genomics	2016	ESCI	1	ENGLAND	2020	0	0.41	250	1350 dollars	0	0	0	0
Global Health Promotion	1994	SSCI	4	USA	2012	5	0.46	974	_c	0	0	0	0
Global Health Research and Policy	2016	ESCI	1	CHINA MAINLAND	2020	5	1.48	862	Covered b	0	0	0	0
Global Health-Science and Practice	2013	SSCI/SCIE	4	USA	2019	7	0.73	1717	No APC	0	0	0	0
Global Mental Health	2014	SCIE	1	ENGLAND	2019	6	0.75	736	3255 dollars	0	0	0	0
Global Public Health	2006	SSCI	10	ENGLAND	2011	11	0.82	3612	2575 dollars	0	0	6	6
Globalization and Health	2005	SSCI/SCIE	1	ENGLAND	2011	18	1.61	5196	2890 dollars	2	2	18	15
International Health	2009	SSCI/SCIE	6	ENGLAND	2012	8	0.59	1741	2000 pounds	0	0	1	1
International Journal of Health Science-IJHS	2007	ESCI	6	SAUDI ARABIA	2020	4	0.42	1178	30 dollars	0	0	0	0

Journal name	First year issued	Edition	Frequency (issues per year)	Country / Region	First electronic JCR year	h-index (2021)	JCI (2021)	Total citations (2021)	APC ^a	Overall hot papers d	COVID- 19-related hot papers m January 20	Overall highly cited papers ^e 20 to June 2	COVID-19- related highly cited papers
Journal of Epidemiology and Global Health	2011	SSCI/SCIE	4	FRANCE	2019	9	0.88	1484	2290 dollars	0	0	2	1
Journal of Global Health	2011	SSCI/SCIE	2	SCOTLAND	2015	15	1.11	4452	1950 pounds	0	0	11	9
Lancet Global Health	2013	SSCI/SCIE	12	ENGLAND	2013	27	8.34	22156	5500 dollars	6	2	39	21
Lancet Planetary Health	2017	SSCI/SCIE	12	ENGLAND	2020	23	4.00	4794	5500 dollars	0	0	12	2
Pathogens and Global Health	1907	SCIE	8	ENGLAND	2012	8	0.91	1943	No APC	0	0	2	2
Tropical Medicine & International Health	1996	SCIE	12	ENGLAND	1997	8	0.70	9448	3150 dollars	0	0	0	0

Note:

^a APC is only charged for research or original articles in global health journals.

^b APC covered by the Global Health Institute, Wuhan University, China before June 30, 2022.

^c Information about APC in Global Health Promotion could not be found in the official website.

d Papers cited in the top 0.1% in a current bimonthly period. Papers are selected in each of 22 fields of science and must be published within the last two years (quoted from Clarivate).

^e Highly cited papers reflect the top 1% of papers by field and publication year (quoted from Clarivate).

Table S2 Changes of non-COVID-19 publications with ITSA analysis due to the pandemic from January 2018 to June 2022 in the included global health journals using Newey-West test

Journal name		Coefficient values	Newey- West Standard error	t	P	95% Confidence interval
	_t ^a	1.83	0.3	6.16	<0.001*	[1.24, 2.43]
	vFeb 2020 b	-14.2	5.52	-2.58	0.013*	[-25.3, -3.1]
Total	_x_tFeb.2020	-2.47	0.50	-4.92	<0.001*	[-3.47, -1.46]
	cons d	153.3	3.9	39.54	<0.001*	[145.5, 161.1]
	t	0.23	0.21	1.09	0.281	[-0.19, 0.65]
	xFeb.2020	-1.3	3.8	-0.33	0.743	[-8.9, 6.4]
Annals of Global Health	_x_tFeb.2020	-0.43	0.20	-2.16	0.036*	[-0.83, -0.03]
	cons	7.0	2.7	2.59	0.013*	[1.6, 12.5]
	t	0.62	0.20	3.02	0.004*	[0.21, 1.02]
	xFeb.2020	-0.3	4.1	-0.06	0.949	[-8.5, 7.9]
BMJ Global Health	x tFeb.2020	-0.56	0.26	-2.14	0.037*	[-1.08, -0.04]
	cons	20.0	2.9	6.81	<0.001*	[14.1, 25.9]
	t	-0.02	0.05	-0.44	0.660	[-0.11, 0.07]
Bulletin of the World Health	xFeb.2020	0.9	1.3	0.70	0.489	[-1.7, 3.6]
Organization	_x_tFeb.2020	-0.15	0.08	-1.87	0.067	[-0.31, 0.01]
	cons	10.3	0.5	19.73	<0.001*	[9.2, 11.3]
	 _t	0.49	0.14	3.50	0.001*	[0.21, 0.77]
Clinical Epidemiology and Global	xFeb.2020	-2.0	4.5	-0.45	0.658	[-11.0, 7.0]
Health	x tFeb.2020	-0.51	0.28	-1.83	0.074	[-1.06, 0.05]
	cons	4.8	1.3	3.80	<0.001*	[2.2, 7.3]
	_t	-0.01	0.12	-0.82	0.417	[-0.33, 0.14]
	xFeb.2020	4.4	3.2	1.35	0.183	[-2.1, 10.9]
Global Health Action	x tFeb.2020	-0.05	0.18	-0.26	0.798	[-0.41, 0.32]
	cons	11.3	1.7	6.86	<0.001*	[8.0, 14.7]
	t	-0.07	0.03	-2.73	0.009*	[-0.11, -0.02]
Global Health Epidemiology and	xFeb.2020	0.3	0.4	0.72	0.477	[-0.5, 1.0]
Genomics	x tFeb.2020	0.06	0.03	2.12	0.039*	[0.00, 0.11]
	cons	1.9	0.4	4.64	<0.001*	[1.1, 2.7]
	t	0.07	0.08	0.78	0.440	[-0.10, 0.23]
	_xFeb.2020	-2.4	1.6	-1.49	0.143	[-5.7, 0.8]
Global Health Promotion	_x_tFeb.2020	0.07	0.09	0.79	0.431	[-0.11, 0.26]
	cons	2.7	1.0	2.72	0.009*	[0.7, 4.7]
	t	0.01	0.01	0.65	0.520	[-0.02, 0.03]
	_xFeb.2020	-0.8	0.7	-1.16	0.253	[-2.1, 0.6]
Global Health Research and Policy	_x_tFeb.2020	-0.01	0.03	-0.37	0.713	[-0.07, 0.05]
	cons	2.9	0.1	20.56	<0.001*	[2.7, 3.2]
	t	-0.41	0.04	-9.41	<0.001*	[-0.50, -0.32]
International Journal of Health	_t _xFeb.2020	0.8	1.1	0.74	0.467	[-1.5, 3.1]
Sciences-IJHS	_x_tFeb.2020	0.36	0.07	5.03	<0.001*	[0.21, 0.51]
	cons	16.2	0.7	24.66	<0.001*	[149, 17.6]
	t	-0.05	0.05	-0.94	0.352	[-0.16, 0.06]
	_t _xFeb.2020	-0.1	1.1	-0.10	0.924	[-2.3, 2.1]
Global Mental Health	_x_tFeb.2020	0.10	0.06	1.59	0.118	[-0.03, 0.23]
	cons	3.5	0.6	6.25	<0.001*	[2.4, 4.6]
	_t	0.12	0.10	1.16	0.253	[-0.09, 0.33]
	_v _xFeb.2020	2.3	2.9	0.80	0.430	[-3.5, 8.2]
Global Public Health	x tFeb.2020	-0.26	0.14	-1.91	0.062	[-0.53, 0.01]
	cons	8.5	1.6	5.22	<0.001*	[5.2, 11.8]
		0.5	1.0	٧.٧٠	-0.001	[3.2, 11.0]

Journal name		Coefficient values	Newey- West Standard error	t	P	95% Confidence interval
	t	-0.13	0.14	-0.92	0.364	[-0.42, 0.16]
	_xFeb.2020	-0.6	2.6	-0.22	0.828	[-5.9, 4.7]
Globalization and Health	x tFeb.2020	0.18	0.15	1.16	0.252	[-0.13, 0.49]
	cons	10.4	1.7	6.27	<0.001*	[7.1, 13.7]
	t	-0.16	0.20	-0.82	0.417	[-0.56, 0.24]
I	_xFeb.2020	-0.1	3.1	-0.02	0.985	[-6.4, 6.3]
International Health	_x_tFeb.2020	0.13	0.23	0.55	0.585	[-0.33, 0.58]
	_cons	11.5	2.8	4.09	<0.001*	[5.9, 17.2]
	_t	0.31	0.05	6.24	<0.001*	[0.21, 0.41]
Journal of Epidemiology and	_xFeb.2020	-4.2	1.6	-2.60	0.012*	[-7.4, -1.0]
Global Health	_x_tFeb.2020	-0.41	0.07	-5.86	<0.001*	[-0.55, -0.27]
	_cons	0.2	1.9	0.13	0.898	[-3.5, 4.0]
	_t	0.25	0.19	1.35	0.184	[-0.12, 0.63]
Journal of Global Health	_xFeb.2020	4.8	4.6	1.05	0.298	[-4.4, 13.9]
Journal of Global Health	_x_tFeb.2020	-0.62	0.25	-2.46	0.017*	[-1.12, -0.11]
	_cons	8.0	1.9	4.31	<0.001*	[4.3, 11.7]
	_t	0.31	0.16	2.00	0.051	[-0.00, 0.63]
Lancet Global Health	_xFeb.2020	-13.2	3.2	-4.16	<0.001*	[-19.5, -6.8]
Lancet Global Health	_x_tFeb.2020	-0.01	0.20	-0.06	0.952	[-0.42, 0.40]
	_cons	23.4	2.3	10.06	<0.001*	[18.7, 28.1]
	_t	-0.14	0.05	-2.82	0.007*	[-0.24, -0.04]
Lancet Planetary Health	_xFeb.2020	-2.5	1.1	-2.23	0.030*	[-4.8, -0.3]
Lancet Flanetary Health	_x_tFeb.2020	0.40	0.07	5.73	<0.001*	[0.26, 0.54]
	_cons	11.9	0.7	17.72	<0.001*	[10.6, 13.3]
	_t	0.01	0.09	0.12	0.908	[-0.17, 0.20]
Pathogens and Global Health	_xFeb.2020	0.2	1.3	0.18	0.859	[-2.3, 2.8]
I amogens and Global Heatin	_x_tFeb.2020	-0.10	0.12	-0.78	0.436	[-0.34, 0.15]
	_cons	4.0	1.0	4.08	<0.001*	[2.0, 6.0]
	_t	0.09	0.16	0.53	0.595	[-0.24, 0.41]
Tropical Medicine & International	_xFeb.2020	0.1	3.0	0.03	0.974	[-5.9, 6.1]
Health	_x_tFeb.2020	-0.30	0.19	-1.59	0.119	[-0.67, 0.08]
	_cons	10.8	1.9	5.79	<0.001*	[7.1, 14.6]

^{*}Note:

^a_t means the differences of the slopes before the pandemic.

^b_xFeb.2020 indicates the differences of the non-COVID-19 publications at the intervention time point, that is, the pandemic.

 $^{^{\}rm c}$ _x_tFeb.2020 indicates the differences of the slopes between before and after the pandemic.

 $^{^{}m d}$ _cons means the constant values, that is, the number of non-COVID-19 publications in January 2018.

A All the included global health journals

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

HA: serial correlation present at specified lags >q

A:	A: s.c. present at range specified						HA: s.c. present at lag specifie						
1	ag	s	chi2	df	p-val	lag	chi2	df	p-val				
1	-	1	1.060	1	0.3032	1	1.060	1	0.3032				
1	-	2	9.129	2	0.0104	2	6.817	1	0.0090				
1	T.	3	9.133	3	0.0276	3	0.562	1	0.4535				
1	7	4	9.137	4	0.0578	4	0.776	1	0.3782				
1	7	5	10.406	5	0.0645	5	0.268	1	0.6046				
1	-	6	20.231	6	0.0025	6	9.900	1	0.0017				

Test allows predetermined regressors/instruments

Test requires conditional homoskedasticity

B Annals of Global Health

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

HA: serial correlation present at specified lags >q

HA: s.c. pi	resent at ran	ge spec	HA: s.c. present at lag specified						
lags	chi2	df	p-val	lag	chi2	df	p-val		
1 - 1	1.942	1	0.1635	1	1.942	1	0.1635		
1 - 2	2.997	2	0.2235	2	0.504	1	0.4779		
1 - 3	3.267	3	0.3522	3	0.014	1	0.9044		
1 - 4	8.004	4	0.0914	4	5.105	1	0.0239		
1 - 5	8.158	5	0.1478	5	1.318	1	0.2509		
1 - 6	14.575	6	0.0238	6	4.212	1	0.0401		

Test allows predetermined regressors/instruments Test requires conditional homoskedasticity

C BMJ Global Health

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

HA: serial correlation present at specified lags >q

iA: s.c. pr	esent at ran	ge spec	HA:	s.c. present	at lag	specified	
lags	chi2	df	p-val	lag	chi2	df	p-val
1 - 1	2.339	1	0.1261	1	2.339	1	0.1261
1 - 2	2.855	2	0.2399	2	0.139	1	0.7098
1 - 3	2.932	3	0.4023	3	0.000	1	0.9905
1 - 4	3.138	4	0.5350	4	0.123	1	0.7259
1 - 5	4.099	5	0.5353	5	1.407	1	0.2356
1 - 6	4.773	6	0.5733	6	1.192	1	0.2748

Test allows predetermined regressors/instruments Test requires conditional homoskedasticity

D Bulletin of the World Health Organization

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

 $\ensuremath{\text{H0}}\xspace$ variable is MA process up to order q

HA: serial correlation present at specified lags >q

	erially uncor esent at ran			HA: s.c. present at lag specified						
lags	chi2	df	p-val	lag	chi2	df	p-val			
1 - 1	0.010	1	0.9220	1	0.010	1	0.9220			
1 - 2	0.176	2	0.9159	2	0.165	1	0.6843			
1 - 3	1.438	3	0.6967	3	1.242	1	0.2650			
1 - 4	2.019	4	0.7323	4	0.433	1	0.5105			
1 - 5	2.207	5	0.8199	5	0.101	1	0.7509			
1 - 6	2.235	6	0.8968	6	0.018	1	0.8947			

Test allows predetermined regressors/instruments
Test requires conditional homoskedasticity

E Clinical Epidemiology and Global Health

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: wariable is MA process up to order q

HA: serial correlation present at specified lags >q

	HO: q=0 (serially uncorrelated) HA: s.c. present at range specified					H0: q=specified lag-1 HA: s.c. present at lag specified						
1	ag	s	chi2	df	p-val	lag	chi2	df	p-val			
1	-	1	8.158	1	0.0043	1	8.158	1	0.0043			
1	-	2	8.359	2	0.0153	2	1.566	1	0.2108			
1	-	3	8.524	3	0.0363	3	0.075	1	0.7841			
1	-	4	9.257	4	0.0550	4	0.578	1	0.4473			
1	-	5	9.264	5	0.0990	5	0.615	1	0.4329			
1	-	6	9.413	6	0.1517	6	0.781	1	0.3769			

Test allows predetermined regressors/instruments Test requires conditional homoskedasticity

F Global Health Action

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

HA: serial correlation present at specified lags >q

	rially uncor		H0: q=specified lag-1 HA: s.c. present at lag specified					
lags	chi2	df	p-val	lag	chi2	df	p-val	
1 - 1	2.373	1	0.1234	1	2.373	1	0.1234	
1 - 2	2.522	2	0.2833	2	0.001	1	0.9751	
1 - 3	3.723	3	0.2929	3	0.901	1	0.3425	
1 - 4	3.932	4	0.4152	4	0.000	1	0.9846	
1 - 5	3.954	5	0.5561	5	0.001	1	0.9708	
1 - 6	5.693	6	0.4584	6	0.999	1	0.3175	

Test allows predetermined regressors/instruments Test requires conditional homoskedasticity

G Global Health Promotion

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

 $\mbox{HA:}$ serial correlation present at specified lags $>\!\! q$

A: s.c. pi	esent at ran	ge spec	HA: s.c. present at lag specified						
lags	chi2	df	p-val	lag	chi2	df	p-val		
1 - 1	2.865	1	0.0905	1	2.865	1	0.0905		
1 - 2	3.096	2	0.2126	2	0.672	1	0.4125		
1 - 3	10.118	3	0.0176	3	7.296	1	0.0069		
1 - 4	11.247	4	0.0239	4	0.032	1	0.8574		
1 - 5	12.462	5	0.0290	5	0.549	1	0.4589		
1 - 6	12.482	6	0.0520	6	0.302	1	0.5824		

Test allows predetermined regressors/instruments Test requires conditional homoskedasticity

H Global Health Promotion

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

HA: serial correlation present at specified lags >q

A: s.	c. pre	esent at ran	ge spec	ified	HA: s.c. present at lag specified						
lags	ii	chi2	df	p-val	lag	chi2	df	p-val			
1 -	1	3.423	1	0.0643	1	3.423	1	0.0643			
1 -	2	6.497	2	0.0388	2	1.374	1	0.2412			
1 -	3	7.686	3	0.0530	3	0.028	1	0.8665			
1 -	4	8.197	4	0.0846	4	0.003	1	0.9530			
1 -	5	8.886	5	0.1137	5	0.064	1	0.8003			
1 -	6	9.219	6	0.1616	6	0.002	1	0.9655			

Test allows predetermined regressors/instruments Test requires conditional homoskedasticity

I Global Health Research and Policy

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

HA: serial correlation present at specified lags >q

HO: q=0 (serially uncorrelated) HA: s.c. present at range specified					q=specified la s.c. present a		specified
lags	chi2	df	p-val	lag	chi2	df	p-val
1 - 1	0.059	1	0.8078	1	0.059	1	0.8078
1 - 2	0.061	2	0.9701	2	0.002	1	0.9637
1 - 3	4.157	3	0.2450	3	4.130	1	0.0421
1 - 4	8.952	4	0.0623	4	4.228	1	0.0398
1 - 5	9.081	5	0.1059	5	0.213	1	0.6448
1 - 6	9.197	6	0.1628	6	0.702	1	0.4022

Test allows predetermined regressors/instruments Test requires conditional homoskedasticity

J Global Mental Health

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

HA: serial correlation present at specified lags >q

	rially uncor: esent at ran			1000000	q=specified la s.c. present a	55 TO SEC-0211	specified
lags	chi2	df	p-val	lag	chi2	df	p-val
1 - 1	1.141	1	0.2855	1	1.141	1	0.2855
1 - 2	3.796	2	0.1498	2	2.034	1	0.1538
1 - 3	3.867	3	0.2762	3	0.050	1	0.8228
1 - 4	9.181	4	0.0567	4	3.232	1	0.0722
1 - 5	9.539	5	0.0894	5	0.115	1*	0.7348
1 - 6	10.859	6	0.0928	6	0.001	1*	0.9801

Test allows predetermined regressors/instruments

Test requires conditional homoskedasticity

* Eigenvalues adjusted to make matrix positive semidefinite

M International Health

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

HA: serial correlation present at specified lags >q

999)	0: q=0 (serially uncorrelated) A: s.c. present at range specified					r=specified la s.c. present a		specified
lag	s	chi2	df	p-val	lag	chi2	df	p-val
1 -	1	0.527	1	0.4678	1	0.527	1	0.4678
1 -	2	1.450	2	0.4842	2	0.757	1	0.3843
1 -	3	1.675	3	0.6425	3	0.475	1	0.4907
1 -	4	4.793	4	0.3092	4	2.696	1	0.1006
1 -	5	4.797	5	0.4412	5	0.066	1	0.7974
1 -	6	5.073	6	0.5344	6	0.007	1	0.9324

Test allows predetermined regressors/instruments

Test requires conditional homoskedasticity

P Journal of Global Health

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

 $\ensuremath{\text{HA}}\xspace$ serial correlation present at specified lags > q

	rially uncor esent at ran	100000	q=specified la s.c. present a		specified		
lags	chi2	df	p-val	lag	chi2	df	p-val
1 - 1	1.275	1	0.2589	1	1.275	1	0.2589
1 - 2	4.195	2	0.1227	2	2.154	1	0.1422
1 - 3	6.019	3	0.1107	3	0.401	1	0.5265
1 - 4	6.072	4	0.1938	4	0.300	1	0.5840
1 - 5	8.117	5	0.1499	5	0.833	1	0.3613
1 - 6	8,176	6	0.2255	6	0.118	1	0.7318

Test allows predetermined regressors/instruments

Test requires conditional homoskedasticity

K Global Public Health

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

HA: serial correlation present at specified lags >q

HA: s.c. pr	esent at ran	ified	HA: s.c. present at lag specifie					
lags	chi2	df	p-val	lag	chi2	df	p-val	
1 - 1	2.495	1	0.1142	1	2.495	1	0.1142	
1 - 2	2.526	2	0.2828	2	0.026	1	0.8717	
1 - 3	2.859	3	0.4138	3	0.282	1	0.5956	
1 - 4	4.342	4	0.3616	4	1.940	1	0.1636	
1 - 5	7.185	5	0.2072	5	4.038	1	0.0445	
1 - 6	7.897	6	0.2458	6	1.760	1	0.1846	

Test allows predetermined regressors/instruments

Test requires conditional homoskedasticity

N International Journal of Health Science-IJHS

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

HA: serial correlation present at specified lags $\geq q$

A: :	s.c. pr	esent at ran	ge spec	HA: s.c. present at lag specifie					
la	js	chi2	df	p-val	lag	chi2	df	p-val	
1 -	1	0.928	1	0.3354	1	0.928	1	0.3354	
1 -	2	4.436	2	0.1089	2	2.467	1	0.1163	
1 -	3	4.846	3	0.1834	3	1.472	1	0.2250	
1 -	4	6.905	4	0.1410	4	1.078	1	0.2990	
1 -	5	6.905	5	0.2278	5	0.000	1 *	0.9969	
1 -	6	15.090	6	0.0196	6	0.428	1 *	0.5131	

Test allows predetermined regressors/instruments

Test requires conditional homoskedasticity

* Eigenvalues adjusted to make matrix positive semidefinite

Q Lancet Global Health

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

 $\ensuremath{\text{HA}}\xspace$: serial correlation present at specified lags $>\ensuremath{\text{q}}$

A: s	A: s.c. present at range specified					s.c. present a	t lag	specified
lag	s	chi2	df	p-val	lag	chi2	df	p-val
1 -	1	0.040	1	0.8415	1	0.040	1	0.8415
1 -	2	1.145	2	0.5641	2	1.096	1	0.2951
1 -	3	5.082	3	0.1659	3	3.523	1	0.0605
1 -	4	5.136	4	0.2736	4	0.001	1	0.9730
1 -	5	7.076	5	0.2151	5	2.955	1	0.0856
1 -	6	8.607	6	0.1969	6	0.560	1	0.4544

Test allows predetermined regressors/instruments

est requires conditional homoskedasticity

L Globalization and Health

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

HA: serial correlation present at specified lags >q

A: s.c. pr	esent at ran	ge spec	ified	HA: s.	c. present	at lag	specified
lags	chi2	df	p-val	lag	chi2	df	p-val
1 - 1	0.057	1	0.8111	1	0.057	1	0.8111
1 - 2	0.160	2	0.9231	2	0.095	1	0.7576
1 - 3	0.184	3	0.9801	3	0.010	1	0.9199
1 - 4	0.567	4	0.9667	4	0.444	1	0.5052
1 - 5	2.071	5	0.8392	5	1.543	1	0.2141
1 - 6	2.084	6	0.9118	6	0.003	1	0.9529

Test allows predetermined regressors/instruments

Test requires conditional homoskedasticity

O Journal of Epidemiology and Global Health

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

HA: serial correlation present at specified lags >q

A: s.c. pr	esent at ran	ge spec	ified	HA:	s.c. present a	t lag	specified
lags	chi2	df	p-val	lag	chi2	df	p-val
1 - 1	0.594	1	0.4410	1	0.594	1	0.4410
1 - 2	1.654	2	0.4373	2	0.863	1	0.3528
1 - 3	1.854	3	0.6033	3	0.043	1	0.8361
1 - 4	3.400	4	0.4932	4	0.950	1	0.3296
1 - 5	3.638	5	0.6027	5	0.006	1	0.9399
1 - 6	3,660	6	0.7226	6	0.084	1	0.7714

Test allows predetermined regressors/instruments

Test requires conditional homoskedasticity

R Lancet Planetary Health

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey)

HO: variable is MA process up to order q

HA: serial correlation present at specified lags >q

3372	rially uncor esent at ran			1	q=specified la s.c. present a	201	specified
lags	chi2	df	p-val	lag	chi2	df	p-val
1 - 1	3.385	1	0.0658	1	3.385	1	0.0658
1 - 2	4.094	2	0.1291	2	1.308	1	0.2528
1 - 3	4.124	3	0.2484	3	0.080	1	0.7779
1 - 4	4.320	4	0.3644	4	0.320	1	0.5716
1 - 5	5.694	5	0.3371	5	0.572	1	0.4494
1 - 6	8.681	6	0.1923	6	3.728	1	0.0535

Test allows predetermined regressors/instruments

Test requires conditional homoskedasticity

S Pathogens and Global Health

Cumby-Huizinga test for autocorrelation (Breusch-Godfrey) H0: variable is MA process up to order q HA: serial correlation present at specified lags >q

	CA 750 5000	rially uncor			20000000 207	specified 1 .c. present		specified
la	gs	chi2	df	p-val	lag	chi2	df	p-val
1 -	1	5.243	1	0.0220	1	5.243	1	0.0220
1 -	2	5.359	2	0.0686	2	0.524	1	0.4693
1 -	3	6.727	3	0.0811	3	1.368	1	0.2421
1 -	4	8.821	4	0.0657	4	1.379	1	0.2404
1 -	5	8.837	5	0.1157	5	0.754	1	0.3853
1 -	6	12.767	6	0.0469	6	3.941	1	0.0471

Test allows predetermined regressors/instruments Test requires conditional homoskedasticity $\label{eq:cumby-Huizinga} \mbox{ test for autocorrelation (Breusch-Godfrey)} $$H0: variable is MA process up to order $q$$$HA: serial correlation present at specified lags $$>q$$$$

T Tropical Medicine & International Health

HA: s.c. pr	esent at ran	HA: s.c. present at lag specifie					
lags	chi2	df	p-val	lag	chi2	df	p-val
1 - 1	5.632	1	0.0176	1	5.632	1	0.0176
1 - 2	5.634	2	0.0598	2	0.597	1	0.4397
1 - 3	7.316	3	0.0625	3	1.782	1	0.1819
1 - 4	7.863	4	0.0967	4	0.088	1	0.7662
1 - 5	7.932	5	0.1600	5	0.006	1	0.9385
1 - 6	7.949	6	0.2419	6	0.039	1	0.8428

Test allows predetermined regressors/instruments Test requires conditional homoskedasticity

Figure S1 Auto correlation plots with Cumby-Huizinga general test (up to lag order=6) for non-COVID-19 publications in the included global health journals

Note: We excluded the number of publications from the Global Health-Science and Practice journal for the ITSA analysis since it only publishes the papers in specific months for a year and the interval of time issued is not equal.