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ABSTRACT
Introduction  It is well known that influenza and other 
respiratory viruses are wintertime-seasonal in temperate 
regions. However, respiratory disease seasonality in the 
tropics is less well understood. In this study, we aimed to 
characterise the seasonality of influenza-like illness (ILI) 
and influenza virus in Ho Chi Minh City, Vietnam.
Methods  We monitored the daily number of ILI patients 
in 89 outpatient clinics from January 2010 to December 
2019. We collected nasal swabs and tested for influenza 
from a subset of clinics from May 2012 to December 2019. 
We used spectral analysis to describe the periodic signals 
in the system. We evaluated the contribution of these 
periodic signals to predicting ILI and influenza patterns 
through lognormal and gamma hurdle models.
Results  During 10 years of community surveillance, 
66 799 ILI reports were collected covering 2.9 million 
patient visits; 2604 nasal swabs were collected, 559 of 
which were PCR-positive for influenza virus. Both annual 
and nonannual cycles were detected in the ILI time series, 
with the annual cycle showing 8.9% lower ILI activity 
(95% CI 8.8% to 9.0%) from February 24 to May 15. 
Nonannual cycles had substantial explanatory power for 
ILI trends (ΔAIC=183) compared with all annual covariates 
(ΔAIC=263) in lognormal regression. Near-annual signals 
were observed for PCR-confirmed influenza but were not 
consistent over time or across influenza (sub)types. The 
explanatory power of climate factors for ILI and influenza 
virus trends was weak.
Conclusion  Our study reveals a unique pattern of 
respiratory disease dynamics in a tropical setting 
influenced by both annual and nonannual drivers, with 
influenza dynamics showing near-annual periodicities. 
Timing of vaccination campaigns and hospital capacity 
planning may require a complex forecasting approach.

INTRODUCTION
The seasonality of respiratory diseases in 
tropical regions is less well studied than in 
temperate regions. One of the challenges is 
the limited scope of surveillance systems in 
tropical regions as healthcare resources are 
prioritised to higher burden diseases such 

as malaria, tuberculosis, HIV and dengue. 
Temperate regions, in contrast, have long-
term established surveillance systems for 
respiratory disease as this is the highest priority 
infectious disease burden in most temperate 
countries. Thus, the burden of respiratory 
disease in the tropics may be underestimated 
because of the paucity of data.1 2 Some recent 
studies3–8 have shown that respiratory diseases 
are associated with morbidity and mortality in 
tropical regions, but more data are needed 
for policy-making.

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Participatory epidemiology and mHealth studies can 
generate digital data streams with thousands of data 
points.

	⇒ There is a lack of long-term fine-scale reporting on 
respiratory infections in the tropics.

	⇒ There are diverging views on whether a tropical in-
fluenza season exists.

WHAT THIS STUDY ADDS
	⇒ This study provides a 10-year daily time series on 
influenza-like illness (ILI) from a community-led 
mHealth study.

	⇒ Both annual and nonannual cycles are identified as 
influential, with climate factors showing weak as-
sociations with influenza and influenza-like illness 
patterns.

	⇒ The inferred annual cycle manifests as a short low 
incidence season rather than a short high incidence 
season.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The existence of a nonannual cycle driving respira-
tory disease dynamics suggests that forecasting the 
next ILI peak may be possible.

	⇒ The ability to forecast high respiratory disease inci-
dence may help with vaccination planning and hos-
pital preparedness.
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Another difficulty of studying respiratory disease 
dynamics in the tropical regions is that irregular epidemic 
patterns are typically observed. The absence of winter in 
tropical regions makes the yearly patterns of influenza 
and influenza-like illness (ILI) less seasonal and less 
predictable.9 Thus far, it has been found that influenza 
in tropical regions shows lower variation in incidence,10 11 
higher variation in epidemic timing10 12 and different peri-
odicities geographically,10 13–18 making it difficult to fore-
cast periods of high incidence. Although some studies in 
tropical areas have shown associations between climate or 
environmental factors and influenza transmission,11 19–23 
this relationship remains elusive16 24 25 and caution is 
needed in interpreting these results and drawing infer-
ences on a ‘typical’ tropical influenza season.

There are two common shortcomings in many past 
analyses focused on influenza and ILI seasonality in 
tropical areas. First, it is not possible to generate robust 
evidence for seasonality using short time series with 
monthly data.26–30 Short time series may be unrepresen-
tative of longer-term behaviours, and when combined 
with a monthly stratification of cases, provide low statis-
tical power to determine when the respiratory disease 
season occurs if there is one. This may be caused by 
the lack of data given the limited surveillance system in 
tropical regions. Second, it is not sufficient to base an 
analysis on associations between climate factors and ILI/
influenza incidence when describing seasonality, as has 
been done previously,21 22 31 32 because spurious associ-
ations will be common between an annually structured 
set of climate factors and an event like an ILI epidemic 
that occurs historically about once per year. A determina-
tion of whether seasonality exists is needed first. Quan-
titative descriptions of long-term fine-scale time series 
are needed to accurately characterise the presence and 
pattern of seasonality in respiratory disease incidence.

Here, we present the periodic signals detected from 
10 years of daily influenza-like-illness (ILI) reports and 
7.5 years of molecular surveillance for influenza virus, 
collected from a community mHealth syndromic surveil-
lance study in Ho Chi Minh City (HCMC), Vietnam. 
Using time series decomposition and regression models, 
we aimed to identify periodicities in the ILI and influ-
enza time series, and to evaluate the explanatory power 
of these periodicities on both high-incidence and low-
incidence periods of ILI and influenza.

METHODS
Literature review
We conducted a literature review to determine the value 
of our study in this field. We searched PubMed for studies 
matching the search terms “((influenza[Title/Abstract] 
OR “respiratory disease”[Title/Abstract]) AND (season-
ality[Title/Abstract])) AND (tropic*[Title/Abstract])”, 
identified 127 studies spanning 2003–2023 (excluding 
our mid-study analysis),33 and evaluated them on four 
criteria: (1) statistical tests for the presence or absence 

of seasonality, (2) weekly/daily reporting of respiratory 
disease incidence counts or percentages, (3) a minimum 
of 5 years of data collection and (4) a minimum of one 
thousand or ten thousand incidence data points available 
per location. Nineteen studies were reviews (excluded), 
and another thirty were excluded as they were labo-
ratory studies, phylogenetic analyses, models or anal-
yses for temperate or sometimes combined temperate-
subtropical zones. Of the remaining 78 studies, 65 had 
no statistical tests for presence or absence of seasonality. 
Some studies used a visual signal or an aggregation of 
data (across years) to the month/week level to describe 
a season. Many studies reported associations with climate 
variables, an analysis that does not establish whether a 
disease incidence pattern is annual or nonannual. Seven 
of the remaining 13 studies used monthly data (too 
coarse for seasonality analysis) or had fewer than 5 years 
of data (insufficient statistical power to identify a season). 
Six studies13 15 17 34–36 met criteria (1) through (3) with 
sample sizes of number of incidence counts/percent-
ages equal to N=520, 520, 988, 3640, 6916 and 9828. 
The largest of these, a Brazilian study17 showing a lack of 
seasonality in tropical but not subtropical parts of Brazil, 
is the largest and most comprehensive study to date on 
the presence/absence of respiratory seasonality in the 
tropics. The other two studies with >1000 data points 
presented seasonality analyses for subtropical China.15 34

Study design
Starting in August 2009, the Oxford University Clinical 
Research Unit (OUCRU) in Ho Chi Minh City (HCMC), 
Vietnam began recruiting community outpatient clinics 
to participate in a daily ILI reporting programme by 
standard mobile phone short messaging services (SMS). 
A total of 89 clinics were recruited during the first 5 years 
of the study, and data collection ended on December 
31, 2019. The recruitment process began by contacting 
physicians at the Hospital for Tropical Diseases in HCMC 
who also ran their own private clinics, and recruitment 
proceeded by word of mouth from the initial participants, 
through annual community engagement meetings, and 
by canvassing local communities and distributing leaflets 
and other information on the project. We do not know 
the refusal rate for participation. The study was run in 
collaboration with local clinicians, community leaders, 
and institutions, as described in the reflexivity statement 
(online supplemental file 2). Clinicians or nurses in each 
participating clinic sent daily text messages to OUCRU 
reporting the total number of visits, the number of 
patients that had ILI symptoms, and the number of hours 
that the clinic was open that day. The ECDC ILI defini-
tion was used: (1) sudden onset of symptoms within the 
past 3 or 4 days; (2) one or more of the following general 
symptoms (a) fever with axillary temperature above 
37.5°C, (b) malaise, (c) headache or (d) myalgia and (3) 
one or more of the following respiratory symptoms (a) 
cough, (b) sore throat or (c) shortness of breath.37 Three 
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common ILI definitions exist with minor differences in 
sensitivity and specificity.38–40

The percentage of ILI patients among total outpatient 
visits per day (%ILI) in each clinic from 1 January 2010 
to 31 December 2019 is used as the primary data type in 
the analysis.41 The ILI ζ-score is defined as the ratio of the 
%ILI observed on a single day divided by the mean %ILI 
in a 365-day moving window (see online supplemental 
text S1) to remove long-term decreasing ILI trends seen 
in seven clinics.12 33 Daily data were detrended using the 
ζ-score for each clinic, and then the arithmetic mean of 
ζ-scores among all clinics reporting that day was calcu-
lated to obtain an aggregated ILI time series. This aggre-
gated all-clinic ζ-score was smoothed with a 7-day moving 
average to remove weekend effects.

Starting 23 May 2012, 24 of the participating outpa-
tient clinics agreed to participate in additional molecular 
influenza surveillance. Based on a randomised schedule, 
one or two clinics per week were assigned to collect 
nasopharyngeal swab samples for influenza molecular 
confirmation by reverse transcription PCR (RT-PCR).33 
Samples were subtyped to identify A/H1, A/H3 and influ-
enza B. Counts of molecular samples and the number 
testing positive for each subtype were aggregated into 
21-day windows to ensure a sufficient sample size in each 
window. A daily ILI+ time series41 42 was constructed as 
the product of the influenza positivity rate each day (this 
is constant for 21-day stretches) and the aggregate all-
clinic daily ILI ζ-score. The daily ILI+was then smoothed 
with a 7-day moving average.

Statistical analysis
We used autocorrelation functions, discrete Fourier trans-
forms and wavelet analyses to identify periodic signals in 
the ILI ζ-score and ILI+ time series. We then used simple 
cyclic step functions (called ‘cycles’ in equations below) 
to infer the magnitude and timing of periodic fluctuation 
in the time series (see online supplemental text S3).

To identify the predictive ability of the inferred cycles 
in the ILI data, we regressed the ILI ζ-score using a 
lognormal model on a range of potential predictors 
including the inferred cycles, 7-day lagged ILI ζ-score, 12 
climate covariates and a school-term indicator (equation 
1).

	﻿‍

ln
(
E
(
ζi
))

= β0 + β1ζi−7 + β2schooli+

β3−4cyclesi + β5−16climatei ‍�
(1)

The 7-day autoregressive term was included because 
human-transmissible pathogen incidence time series are 
temporally autocorrelated. Climate data were collected 
from the NASA POWER Project43 and 12 climate covari-
ates were included: temperature, absolute humidity and 
rainfall, all lagged at 0, 1, 2 and 3 weeks, as all have been 
reported to be associated with ILI or influenza trends in 
previous studies.11 44 45 The climate covariates were scaled 
using z-score normalization. School term was included 
because of the high transmissibility of ILI among chil-
dren (details in online supplemental text S4).46 47

In the molecular influenza time series, the statistical 
approach needs to account for an over-representation of 
zeroes in the ILI+ time series (about 9% of daily time 
points). We use a two-step gamma hurdle model to regress 
ILI+ onto covariates. The first step is a logistic model esti-
mating the probability that influenza activity is present 
given the predictors (equation 2). The second step is a 
gamma model estimating the magnitude of influenza 
activity conditioned on influenza activity being present 
on that day (equation 3).

‍

step 1: logit
(
P
(
ILI+

i > 0
))

= β0 + β1ILI+
i−21 + β2schooli+

β3−4cyclesi + β5−16climatei

‍
(2)

	﻿‍

step 2: ln
(
E
(
ILI+

i | ILI+
i > 0

))
= β0 + β1ILI+

i−21 + β2schooli+

β3−4cyclesi + β5−16climatei ‍ 
� (3)
The autoregressive term of ILI+ is 21-day lagged ILI+. 
The inferred cycles were estimated from ILI+ data. All 
the other predictors remain the same as in Eq .1.

To compare results in HCMC to locations with known 
seasonality, we collected ILI data from temperate regions, 
including US and four European countries (details in 
online supplemental text S2). For both HCMC and 
US ILI data, we conducted stepwise AIC (Akaike Infor-
mation Criterion)-based forward model selection to 
select the predictors that contribute substantially to the 
goodness-of-fit of the model, measured as R2. Specifically, 
we allocated the R2 to each predictor by calculating how 
much explained variance will increase when adding the 
predictor into the model (details in dominance anal-
ysis48–50 and online supplemental text S5). In this way, 
we are able to compare the contributions (in terms of 
explained variance) of the annual and nonannual cycles 
to ILI trends in HCMC and the US.

All analyses were conducted using R version 4.0.3. 
Wavelet analysis was done using WaveletComp package.51 
Gamma hurdle models were implemented using 
glmmTMB package.52 R2 decomposition was done using 
relaimpo package.53

RESULTS
From 1 January 2010 to 31 December 2019, 89 clinics were 
enrolled in the study. A total of 66 799 SMS text messages 
with ILI reports were sent covering 2 893 515 outpatient 
visits, 257 789 (8.9%) of which were patients meeting 
the clinical definition of ILI. Among the clinics, 33 were 
selected for analysis as they sent more than 300 reports 
during the 10-year period with >50% of reports showing 
a non-zero number of ILI patients. The selected clinics 
were evenly distributed across neighbourhoods of HCMC 
(online supplemental figure S1). To evaluate biases in 
individual physician diagnosis of ILI, we compared ILI 
reporting rates to confirmed influenza trends and did 
not find patterns of clinics consistently overdiagnosing 
or underdiagnosing ILI relative to concurrent influenza 
circulation (online supplemental figure S2). Among the 
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included clinics, the median daily number of patients per 
clinic was 44 (IQR: 35–53), and the median of the daily 
number of patients per clinic meeting the definition of 
ILI was 4 (IQR: 3–6).

Periodic signals in syndromic influenza-like illness data
The syndromic ILI ζ-score time series appears noisy (but 
is not white noise, p<0.001, Box-Ljung test) and exhibits 
weak fluctuations with no visually discernible seasonality 
(figure 1), especially when compared with ILI patterns in 
temperate regions (online supplemental figure S3). The 
absence of strong and regular seasonality is consistent 
with subtropical Hong Kong and tropical Singapore 
(online supplemental figure S3). As the seasonal signals 
are not visually obvious, three separate analyses were used 
to determine the presence/absence of periodic signals in 
the data.

Periodic signals detected by autocorrelation function 
(ACF) were weak in HCMC compared with temperate 

regions (online supplemental figure S4), and they were 
not robust to the number of years included in the data. As 
in our previous analysis,33 the first 8 years of data collec-
tion showed a well-supported 203-day signal from 2010 
to 2017 (figure 2A, top-left panels) and an annual signal 
appearing for most time periods. However, including 
all 10 years of data from 2010 to 2019 showed a strong 
annual signal without a nonannual signal; this appears 
to be driven primarily by the high inter-year correlation 
in the ILI signals between 2017/2018 and 2018/2019 
(Pearson’s ρ=0.325 and 0.568, respectively, online supple-
mental figure S5). This shift from a primarily nonan-
nual cycle to primarily annual cycle (figure  2B) is also 
observed in the wavelet analysis (online supplemental 
figure S6). Statistical evidence (via the ACF) for both 
annual and nonannual cycles is robust to sub-setting the 
time series to shorter periods (figure  2B), except for 
the year 2019 which appears to have a singularly strong 

Figure 1  Daily ILI ζ- score (grey line) and 7-day smoothed ILI ζ- score (black line) from 2010-01-01 to 2019-12-31. The mean 
of ILI ζ- score in each year is shown as a blue horizontal dashed line.
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effect on the autocorrelation patterns. Discrete Fourier 
transform of the ILI ζ-score supports both a nonannual 
cycle (215 days) and an annual cycle (365 days) showing 
equally strong signals (online supplemental figure S7).

To describe the cycles quantitatively, a fit of a cyclic 
two-step function to the ILI ζ-score selected 365 days and 
210 days as the two periodicities most likely to explain 
the data (AIC=−5016 and AIC=−4931, respectively). For 
the annual cycle, the ILI ζ-score is 8.9% (95% CI 8.8% 
to 9.0%) lower from 24 February (95% CI 24 February 
to 25 February) to 15 May (95% CI 12 May to 18 May), 
suggesting that respiratory disease seasonality in the 
tropics may manifest itself as a low season rather than 
a high season. For the 210-day cycle, the ILI ζ-score is 
6.8% (95% CI 6.6% to 7.0%) lower for a 104-day period 
of the cycle. In both cases, the difference in respiratory 
disease incidence between low and high season is small. 
An 8-step 365-day cycle (AIC=−5138) and a 5-step 210-day 
cycle (AIC=−5033) were selected from a varying number 
of steps and cycles (figure 3A, online supplemental figure 
S8) and were included in the regression analysis. After 
stepwise AIC-based model selection, annual and nonan-
nual cycles are retained in the final regression along with 

the 7-day autoregressive term and various climate factors 
mainly related to humidity (figure  3C) (online supple-
mental table S1). The AIC difference when removing the 
nonannual cycle (ΔAIC=183) from the lognormal model 
was larger than when the annual cycle was removed 
(ΔAIC=79), indicating that nonannual trends contain 
specific information for the ILI incidence pattern that 
is not contained in other predictors. The large contri-
bution of the nonannual cycle to the model’s goodness-
of-fit may signal the presence of certain nonannual 
epidemiological processes unique to tropical regions. 
The larger AIC difference when removing all annual 
covariates (ΔAIC=263) suggests that ILI incidence 
showed a stronger annual pattern (data-derived and not 
necessarily climate-linked). The ΔAIC for all the climate 
factors alone is 50.

Critically, the nonannual ILI periodicities observed in 
HCMC are not present in temperate datasets that were 
processed with the same methods used for the HCMC 
data. Autocorrelation functions (online supplemental 
figure S4) and wavelet analysis (online supplemental 
figure S6) show strong peaks at 1 year with no signs of 
subannual periodicity—this is consistent across regional 

Figure 2  Nonannual and annual cycles in ILI ζ- score. (A) Pearson autocorrelation function (ACF) of ILI ζ- score timeseries, 
split across different study periods. Horizontal dashed lines label the regions where ACF is significantly different from 0 (p < 
0.05). Vertical dashed lines label the peak lag period of ACF between 150 to 450 days. Annual cycle is labeled with a black 
dot. Periods are inclusive so “2010-2015” spans six years. (B) The shift of ACF values from nonannual cycles to annual cycles. 
The x-axis denotes the last year included in the time series, and the y-axis shows the ACF value. ACF values of annual cycles 
(circles) and nonannual cycles (triangles) are shown. The nonannual cycle showed stronger signals prior to 2017.
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US data sets (10 HHS regions) and 4 European coun-
tries with time series longer than 5 years. Based on an 
R2 decomposition48 from the regression models from 
HCMC and 10 HHS regions, the nonannual inferred 
cycle explains around 15% variance of the ILI ζ-score in 
the tropics compared with <1% of the variance in 10 HHS 
regions (online supplemental figure S9). Weaker annual 
signals were observed in HCMC than in temperate zones, 
but the nonannual signals were stronger.

Periodic signals in influenza data
In the molecular surveillance component, a total of 
2604 nasal swabs were collected from 23 May 2012 to 31 
December 2019 of which 21.2% (N=559) were positive for 
influenza. After subtyping, 6.3% were positive for influ-
enza H1N1, 6.5% were positive for influenza H3N2, and 
8.0% were positive for influenza B. There was no signifi-
cant correlation between syndromic and virological data 
(Pearson’s ρ=−0.14, p=0.11), suggesting cocirculation of 
many non-influenza respiratory pathogens. Between 23 
May 2012 and 23 January 2019, of 2225 samples collected, 
1156 (52.0%) were from male patients and 1069 (48.0%) 
from female patients.

To validate the molecular surveillance trends in our 
community-based study, we compared our pattern of ILI+ 
to the ILI+ time series seen in hospital-based surveillance 
via Vietnam’s National Influenza Sentinel Surveillance 
System in HCMC.12 54–56 The overlap between 2012 and 

2015 for a period of 186 weeks between the two time 
series showed similar circulation pattern of influenza and 
its subtypes (Pearson’s correlation ρ=0.568 (95% CI 0.456 
to 0.662) for overall influenza, ρ=0.784 (95% CI 0.719 to 
0.836) for subtype A/H1N1, ρ=0.706 (95% CI 0.621 to 
0.774) for subtype A/H3N2 and ρ=0.523 (95% CI 0.404 
to 0.624) for influenza B; all p<10−4, online supplemental 
figure S10).

There is no conspicuous seasonality in influenza inci-
dence patterns in HCMC (figure 4A). There appears to 
be a single influenza peak per year, with autocorrelation 
peaking at 358 days (figure 4B) and showing peak values 
around (but not on) the annual cycle when changing the 
number of years of data included (figure 4C). Discrete 
Fourier transform showed the highest power at the 
324-day cycle (figure 4D), and the cyclic step functions 
showed the highest likelihood at periods of 330 days and 
385 days (figure 5A, online supplemental figure S8), indi-
cating near-annual periodicities in the influenza pattern 
in HCMC. As in previous analyses, a single influenza peak 
per year does not guarantee that the timing is repeatable 
or consistent.12 In addition, the inconsistent timings and 
peaks across subtypes (online supplemental figure S11) 
suggest a lack of climate or school-term influence on 
influenza circulation. The best-fit gamma hurdle model 
explaining the ILI+ data included both the 330-day and 
385-day cycles (online supplemental table S2, figure 5C). 

Figure 3  Nonannual and annual cycles in ILI ζ- score. (A) The AIC of cyclic step functions for ILI ζ-score for different numbers 
of steps and different cycle lengths. AIC is lowest for a cycle of 210 days or 365 days. (B) Contribution of each predictor is 
calculated as the AIC difference when removing the predictor from the fitted lognormal model. “Temp” denotes temperature, 
“RF” denotes rainfall, and “AH” denotes absolute humidity. (C) Predicted values of ILI ζ-score (red) and 95% prediction 
intervals (orange) of the full model including both cycles; the observed ILI ζ-score is shown in grey.
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The multiple near-annual periodicities in ILI+ suggest a 
period with high influenza activity that keeps shifting 
every year, a hypothesis that would require further testing.

DISCUSSION
Our community-led syndromic mHealth study was 
designed to remove barriers to enrollment, simplify 
reporting and encourage long-term consistent participa-
tion in order to generate a syndromic data stream compa-
rable to the ‘big data’ epidemiological outputs that began 
to be assembled at the beginning of last decade. With the 
integration of digital data streams into epidemiological 
analysis,57–61 data streams with N=108 data points can be 
easily assembled and mined for associations with disease 
incidence data. As with any data set of this size, some of 
these associations are spurious.62 Our purpose here was to 

generate a medium-sized data stream of ~105 data points 
(here >250 000 patients meeting the ILI case definition) 
where each data point was traceable back to a physician’s 
diagnosis of a patient’s symptoms presentation. The proof 
of principle that a ‘medium data’ approach can work 
at this scale is the validation of our community study’s 
influenza time series against Vietnam’s national sentinel 
surveillance system showing the same incidence patterns 
for influenza A/H3N2, A/H1N1 and influenza B over a 
186-week period. Additionally, the daily reporting in this 
study provides a unique level of resolution in identifying 
annual or cyclic patterns of disease incidence.

In previous studies aiming to characterise seasonality 
of influenza in tropical regions, it has been common to 
assume the existence of seasonal trends. Seasonality in 
tropical locations has been described in previous research 

Figure 4  ILI+ time series and periodic signals. (A) The 7-day smoothed overall ILI+ stacked by subtypes. (B) ACF plot of the 
entire time series of total ILI+. Vertical dashed line labels show ACF peaks at 358-day lag and the subsequent cycles. Black 
points show annual cycles. (C) The peak lag of ACF varied between 338 and 377 days when varying the length of the included 
ILI+ time series. (D) Discrete Fourier transform of the entire time series of overall ILI+. The black circle labels the dominant 324-
day cycle.
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by identifying that epidemics occur each year, without 
seeking to determine whether there is consistency in 
their timing.10 19 22 26 63–65 Rather than noting whether 
each calendar year contains an influenza epidemic in 
HCMC, we incorporated inferred cycles into our statis-
tical models that estimate best-fitting cycle lengths. 
These inferred cycles, and their predictive ability in the 
regression models, provide evidence of the existence of 
cycles with lengths different from 365 days. An identical 
approach to temperate ILI data does not show the exis-
tence of such cycles.

Mechanisms
There is unlikely to be a specific climate effect driving 
ILI or influenza dynamics in the tropics. In our analysis, 
climate covariates tend to have low explanatory power 
(figures 3B and 5B). Nevertheless, the inferred low ILI 
season (24 February to 15 May) does occur during the 
hottest and driest months in HCMC, suggesting this link 
deserves further investigation despite the mixed associ-
ations between climate and ILI seen in online supple-
mental table S1. Different influenza subtypes peak at 
different times of year (figure 4A), leading to a conclu-
sion of an improbable link between climate factors and 
the particular influenza subtype they are influencing.

Seasonality explanations in temperate regions are 
clearer: the environmental factors associated with viral 
survival and transmissibility and human movement/

contact behaviours all experience abrupt changes during 
winter. With no winter forcing in the tropics, we may 
be observing the disease dynamics and their associated 
cycles driven by other immune, environmental or demo-
graphic factors. That is, the observed periodic signals in 
our study may be indicative of the natural internal clock-
work of the dynamics of respiratory viruses when winter 
is absent. Another possibility is that the dynamics are 
fluctuating around an endemic equilibrium under the 
effect of stochasticity (eg, super-spreading events, impor-
tation) when the environmental drivers are weak, leading 
to transient dynamics, with possibly cyclic behaviours.66–68

Second, a lack of correlation between ILI incidence 
and PCR-confirmed influenza incidence indicates that 
a broader understanding of all respiratory virus circula-
tion will be necessary to understand what is perhaps a 
more complex system with many viruses competing for 
resources, excluding other viruses through short-term 
immunity mechanisms, and driving a pattern of incidence 
in humans that is visible to us as a series of low peaks and 
long shallow troughs of ILI.69 A long-term cohort with a 
weekly panel of molecular diagnostics would be a benefi-
cial starting point for describing the interactions among 
a large group of respiratory viruses.

Finally, a reassessment of the definitions of ILI or influ-
enza season is needed in characterising respiratory virus 
circulation in the tropics. The ‘outbreak’ or ‘epidemic’ 

Figure 5  Cycles in ILI+. (A) AIC heatmap for cycle length and the number of steps allowed in each cycle. Near-annual cycle 
lengths (330-day and 385-day) have the best fits. (B) AIC contribution of each predictor in a gamma hurdle model, measured 
as the AIC difference when removing the predictor from the final model. “Temp” denotes temperature, “RF” denotes rainfall, 
and “AH” denotes absolute humidity. (C) The predicted ILI+ (red) with the 95% prediction interval (orange) is shown with the 
observed ILI+ (grey).
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designation is commonly used in temperate regions to 
describe a more than fivefold increase in ILI activity, a 
criterion that could not be used in the tropics. Instead, 
year-round persistence with 9% lower activity during a 
13-week period suggests that ILI transmission could expe-
rience a short low season in the tropics, inferred as late-
February to mid-May in HCMC. Retooling mechanistic 
models to allow for or identify periods of low transmis-
sion may be the next step in understanding the long-term 
effects of this particular epidemiological driver. Identifi-
cation of the driving forces of respiratory virus dynamics 
in the tropics is still very much an open question.

Limitations
PCR-confirmed influenza reports around the Lunar New 
Year period were removed from the regression analysis 
because the laboratories were closed during this period. 
Data during this 2-week period each year were handled 
as missing data, despite higher human mobility and 
congregation patterns during this time that may have 
impacted respiratory virus transmission. This may lead to 
an unknown bias in the model inference, despite the fact 
that only 3% of all data points fall into these periods.

Difference in healthcare access between high-income 
and low-income settings may lead to differences in the 
populations being represented in syndromic surveil-
lance reporting. For this reason, temperate and tropical 
ILI trends may not be directly comparable as general-
population measures. Our study showed a high correla-
tion between community surveillance and hospital-based 
surveillance as an internal validation (online supple-
mental figure S10), but comparison between Vietnam 
and Hong Kong or Singapore would be necessary to 
determine if healthcare access has any effect on regional 
patterns of respiratory disease transmission in Southeast 
Asia.70 71

Due to the nature of the data smoothing for the purpose 
of the analysis presented in this study, lag periods in the 
regression models were constrained to be multiples of 
7 days for the models for ILI and 21 days for the models 
for ILI+. These were based on using 7-day smoothing to 
avoid reporting effects of weekends and 21-day test posi-
tivity rates. This limits the ability to include lag periods 
for climate factors of less than 7 days, which may repre-
sent important mechanisms in influenza transmission. 
The climate factors in the regression models carried low 
influence on the overall model fit, as shown by lower 
changes in AIC based on their inclusion compared with 
the inferred cycles.

The model fits shown from both the models for ILI and 
ILI+ in HCMC showed close fits to the data (figures 3C 
and 5C). However, the goodness-of-fit may be impacted 
by using the previously-fit step functions as covariates as 
these covariates were derived from the data. This poten-
tially leads to overfitting in the models, where a function 
of the observed ILI(+) values was used as a predictor of 
ILI(+).

Long-term outlook
The methods and results in this study can be extended 
into a forecasting framework in order to predict future 
peaks or incidence of influenza in HCMC. Similar work 
using statistical models to produce short-term forecasts 
of infectious disease burden has been applied to respira-
tory viruses as well as other non-respiratory human 
communicable diseases and vectorborne diseases.72–77 
In the context of this study, the fitted regression models 
were shown to predict ILI and ILI+ with high accuracy 
(figures  3C and 5C), suggesting that extrapolating the 
models to predict future burden may also provide accu-
rate forecasts. Extending the methods used in this study 
to produce a forecasting model is a natural extension of 
the current study. While regular forecasts of incidence 
may prove difficult due to the model’s setup to predict 
detrended data rather than actual incidence values, the 
forecasted trajectories would prove useful in identifying 
periods of relatively high ILI or ILI+ incidence.

If the approaches presented here lead to successful fore-
casts of ILI and ILI+ peaks, this may help inform preven-
tion measures for influenza such as vaccination, public 
health messaging and preparation for increased inci-
dence of hospitalisation. Influenza vaccination coverage 
in Vietnam is currently low,78 though efforts to increase 
vaccination among healthcare workers have been intro-
duced in recent years. Noting the lack of strong annual 
seasons is important for designing vaccine campaigns in 
HCMC because there is little evidence to show that there 
is an optimal time for administering vaccines. Likewise, 
public health messaging and preparation in the public 
health and medical system have the potential to improve 
substantially if influenza and ILI patterns in Vietnam and 
other tropical regions can be better understood and fore-
cast more accurately.

CONCLUSIONS
Our study presents a unique pattern of the dynamics of 
influenza and other respiratory diseases in the tropical 
regions, represented by HCMC, Vietnam. Respiratory 
diseases showed both annual and nonannual cycles with 
8.9% lower activity during spring. Influenza showed near-
annual periodicities. By showing the different patterns 
between tropical regions and temperate regions, our study 
shows the importance of developing different prevention 
strategies in tropical regions than in temperate regions.
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