Knowledge translation and evidence generation to increase the impact of vector control in Burkina Faso, Cameroon and Malawi

Chikondi Andrew Mwendera, Themba Mzilahowa, Flobert Njokou, Sagnon N’falé, Jessica Armegee Quach, Edward Thomsen, Roch Dabire, Hilary Ranson, Nurudeen Alhassan, Rose Oronje, Eve Worrall

ABSTRACT
Lack of context-specific evidence and inadequate evidence-use for decision-making contribute to poor health. This paper reports on our work aimed at addressing the knowledge translation (KT) gap between evidence generators and users. We present our experiences of strengthening KT via technical advisory groups (TAGs) in parallel with increasing evidence generation through research fellowships and operational research. Vectorborne diseases (VBDs) impose substantial health and economic burdens in sub-Saharan Africa despite being preventable with vector control. The Partnership for Increasing the Impact of Vector Control aimed to reduce the burden of VBDs in Burkina Faso, Cameroon, Malawi and at regional and global levels. TAGs can promote evidence-use in policy and practice by engaging relevant stakeholders in both research and policy processes. TAGs and related activities are best facilitated by a coordinator with skills in research and policy. Contextual factors should influence the design and governance of TAGs, which will likely evolve over time. Relevant national stakeholders should be included in TAGs and be actively involved in developing research agendas to increase the relevance and acceptability of research findings for decision-making. The countries present three differing contexts with longer-term research and evaluation necessary to draw lessons on impact.

SUMMARY BOX
⇒ Knowledge translation platforms promote interaction between evidence generators and evidence users, helping to increase evidence-use in policy and practice.
⇒ A multicountry programme to establish knowledge translation platforms for vectorborne disease control in three countries resulted in similar but distinct and evolving models.
⇒ Enabling researchers to identify key stakeholders, develop effective communication strategies and engage evidence users requires ongoing investment from early career stage.
⇒ Knowledge translation platforms can leverage national research capacity and deliver operationally relevant research and evidence.
⇒ Knowledge translation platforms can be combined with capacity strengthening initiatives to close the ‘know do’ gap and develop the next generation of influential research leaders.

INTRODUCTION
The global challenge of evidence-informed policy-making in health is perpetuated by the gap between researchers and policy-makers. Knowledge translation (KT) addresses this gap by promoting interactions that encourage policymakers’ responsiveness to research and researchers to conduct policy-relevant research. The WHO supports global KT efforts through the Evidence-informed Policy Network that encourages countries to establish KT platforms (KTPs). For example, platforms such as immunisation advisory groups have been instrumental in influencing immunisation country policy changes through evidence promotion. Specific to vector control (VC), the WHO developed the Global Vector Control Response to guide the implementation of VC through stakeholder integration and evidence-use. This paper reports on experiences from a multicountry partnership aimed at setting up platforms for increasing evidence-use in national policy-making for vectorborne diseases (VBDs). We explored how context and targeted capacity strengthening efforts in policy engagement and evidence uptake shaped the establishment of Technical Vector Control Advisory Groups (Groups) as KTPs in Burkina Faso, Cameroon and Malawi.

BACKGROUND
VBDs such as malaria and dengue remain major public health problems, especially in sub-Saharan Africa. Many of these diseases
are preventable through VC, but implementation challenges remain: vertical administration of some VBD programmes results in duplication or conflict of activities and resource wastage, and a lack of support for programme implementation. W

In 2017, collaborators from the global south (Burkina Faso, Cameroon, Malawi) and north (UK) established a 5-year research programme called Partnership for Increasing the Impact of Vector Control (PIIVeC) with funding from UK Research and Innovation Global Challenges Research Fund. The PIIVeC goal was to reduce the VBD burden through effective, locally appropriate and sustainable VC supported by locally generated evidence. The collaborating institutions included: Centre National de Recherche et de Formation sur le Paludisme (CNRFP) in Burkina Faso; Centre for Research on Infectious Diseases (CRID) in Cameroon; Malaria Alert Centre of the College of Medicine (MAC-COM) in Malawi; and, Liverpool School of Tropical Medicine in the UK.

During preproposal needs assessment, southern partners’ responses to four questions (Box 1) informed development of the programme and theory of change. The theory of change comprised four streams: (1) individual capacity; (2) institutional capacity; (3) evidence base and (4) KT, delivered through five integrated work packages (WPs).

We report on our experiences focusing on activities to increase the evidence base (stream 3) and enhance KT (stream 4) that were supported by the policy analysis and research uptake (WP4) team. We also describe a south-south engagement unit that emerged alongside programme implementation. We had intended to report on the impact of these efforts, however, the combined impact of COVID-19, and UK government cuts to overseas development assistance funding, which directly affected our programme duration, meant that we were unable to do so. Lessons from the professional development scheme (stream 1) and institutional capacity strengthening (stream 2) use a different theoretical framework and have been evaluated across multiple consortia, hence will be reported elsewhere. Figure 2 provides a Gantt chart of the PIIVeC planned and actual timelines for key activities.

KNOWLEDGE TRANSLATION

Technical VC advisory groups

PIIVeC appointed country coordinators (coauthors SN’f, FN and TM) who facilitated the establishment of technical VC advisory groups (groups) in each country. The primary objective of these groups was to share evidence and advise Ministries of Health (MoHs) and other stakeholders. The groups brought together relevant stakeholders, such as researchers, policy-makers and programme managers, to share experiences, collaborate, set research agendas and serve as KTPs. Hence, the coordinator position demanded skills in policy engagement, knowledge of the MoH, and VBD programmes and VC. Country-led recruitment processes for the coordinators were expected to be completed within 5 months (from November 2017), but took 10 months in Burkina Faso and Cameroon, and 12 months in Malawi. Burkina Faso recruited an influential government employee from within the MoHs Malaria research centre (CNRFp) as the coordinator. In Malawi, the lack of a suitable candidate resulted in the PIIVeC Malawian coinvestigator, affiliated to MAC-COM, doubling as a coordinator with additional administrative and programme management resources drafted in to support the increased workload. Cameroon opted to appoint a full-time coordinator, with an additional part-time deputy and a (consultant) programme advisor to provide a strong link with MoH.

Stakeholder analysis and engagement

Once appointed, coordinators initiated in-country desk-based stakeholder analyses guided by an analytical tool developed by the WP4 team (online supplemental appendix 1). The tool identified actors, with interest in VBDs, for engagement and potential group membership, and was intended to be continuously updated as stakeholder roles evolved, or when new stakeholders were identified.

The preliminary Cameroon and Malawi analyses were available for review during a policy engagement and evidence uptake training, in October 2018, facilitated by AFIDEP. The interactive 5-day face-to-face training developed the coordinators’ and Research Career Development Fellows’ (fellows are described under the ‘Evidence generation’ section below) policy engagement skills to support KT. Coordinators presented preliminary analyses and discussions led to important revisions to the number and range of stakeholder institutions suggested for inclusion in the advisory Groups. While a formal analysis was not conducted in Burkina Faso, the coordinator verbally shared group plans.

The process of developing policy engagement strategies also started during the training. The strategies defined

Box 1 **Key questions posed during needs assessment phase**

- How much dialogue exists between different VBD control programmes and how can it be strengthened?
- What is the best way to strengthen partnership between researchers and national programmes?
- What are the main obstacles to individuals developing a research career in vector biology?
- What are the priorities for strengthening the support structures in your institution?
and documented plans to target key stakeholders with relevant evidence to aid KT. This was an iterative process led by the coordinators and supported by the WP4 team, who developed a tailored strategy framework to capture the objectives, stakeholders, engagement activities and monitor progress against indicators. The process was conducted alongside the groups’ establishment, with strategy documents being produced after seventeen months in Burkina Faso and Cameroon, and 10 months in Malawi. As with the stakeholder analyses, the strategies were supposed to be living documents and updated in response to new or evolving priorities.

Group governance, scope, structure and membership

Goverance and scope are important in determining power and support. For effectiveness and sustainability, we...
envisaged that MoHs would govern the Groups. During implementation, Burkina Faso and Malawi retained the idea of MoH governance. However, in Cameroon, the group was established under the governance of CRID (a non-governmental research centre), guided by a memorandum of understanding with the MoH. This decision was primarily driven by previous lack of support to similar groups within MoH while the good relation between CRID and MoH made the arrangement plausible. Burkina Faso and Malawi had pre-existing exclusively malaria National VC technical working groups (VC TWGs) led by the National Malaria Control Programmes which offered the potential to expand their scope to cover other VBDs, rather than setting up entirely new Groups. In Malawi, 12 stakeholder consultation interviews were conducted (by coauthor CAM) to inform this decision. The findings highlighted concerns that simply expanding the malaria VC TWG risked malaria continuing to dominate the agenda. Hence, Malawi and Burkina Faso (for similar reasons) opted to create standalone groups to provide neutral platforms for all VBDs.

Each country established different group structures, all with secretariats responsible for management and administration (figure 3). Burkina Faso and Cameroon established two-tiered Groups with larger deliberation groups and smaller decision-making subunits, while Malawi established a one-tier group. The composition of the decision unit in Cameroon reflected that of the overall Group, whereas in Burkina Faso it excluded the private sector, and donor and partner institutions. In Malawi, the group included only two government representatives to facilitate the provision of independent advice to ministries.

The groups’ institutional membership in all three countries included government members (35% (9/26), 35% (9/26) and 13% (2/15) for Burkina Faso, Cameroon, and Malawi, respectively); academic and research (31% (8/26), 50% (13/26) and 53% (8/15), respectively); and, donor, technical and implementing partners (26% (7/26), 16% (4/26) and 33% (5/15), respectively). Only Burkina Faso included private sector partners (7% (2/26) (table 1). The groups were formally established (timeline from recruitment of coordinators to first meetings being held) within 10 months in Burkina Faso and Cameroon, and 19 months in Malawi. The process in Malawi was delayed by the stakeholder consultations, bureaucratic procedures and the political uncertainty following the May 2019 disputed general elections. In Burkina Faso, there were three different Ministers of Health during the life of PIIVeC, requiring new relationships to be built each time as senior health officials changed with the minister.

Rapid reviews and evidence synthesis

During the programme’s conception, we had anticipated the need for rapid reviews to inform Group decision-making, and the WP4 team included staff with this expertise. Despite this resource availability, there was no demand for rapid reviews, with countries preferring to commission operational research (OR) (described below under evidence generation).

Secondment programme

PIIVeC aimed to generate evidence and impact policy simultaneously at national and global levels. We envisaged that secondment of researchers to global policy-focused (eg, WHO Geneva) and implementation-focused institutions (eg, Global Fund) would provide further KT opportunities; increase the influence of African scientists on global policy; and support individual capacity strengthening. However, despite having agreements in place with relevant global partners, it proved challenging to achieve this, primarily due to matching relevant skills and expertise with the placements available and identifying clear objectives for the secondments that would benefit both parties plus, latterly, the COVID-19
Countries chose different group names, but the standardized terms are described below for ease of presentation:

1TVCAG: Technical Vector Control Advisory Group – Overall group for deliberations. The group is called Expert group in Burkina Faso, Advisory group in both Cameroon and Malawi.

2Decision unit – TVCAG sub-groups in Burkina Faso and Cameroon comprising senior members responsible for final decision-making such as selection of operation research projects. This unit is called the Steering committee in Burkina Faso and Consultative group in Cameroon. The Malawi TVCAG is responsible for both deliberations and decision-making.

3Secretariat – Sub-group of decision units in Burkina Faso and Cameroon, and TVCAG in Malawi responsible for management and administration. Essentially the operational unit that gets things done.

4CC: Country Coordinator

Figure 3 TVCAG structures in the three countries. PIIVeC, Partnership for Increasing the Impact of Vector Control.

pandemic. However, we promoted opportunities (vacancies) within global policy committees via the partnerships network which resulted in at least two additional African scientists (including one PIIVeC fellow) sitting on influential WHO committees. We also facilitated opportunities for staff from partner organisations to obtain specific skills (for example in laboratory management skills).

EVIDENCE GENERATION

The programme had two main strategies to generate evidence: OR commissioned by the groups; and academic research by fellows and early career researchers (ECRs) they supervised.

OR evidence

Prior to launching and first Group meetings, VBD programme managers in each country were invited to prepare presentations on the current disease statuses and identify critical evidence gaps. In Cameroon, after the presentations, meeting participants were grouped, based on disease expertise and interests, to further discuss and prioritise the evidence gaps, which were presented to the wider Group for review. Later, the decision unit convened to consolidate and prioritise the policy research themes for each disease. Prioritisation was in line with the MoH research strategic plan, disease impact (malaria with a high burden) and weakness of existing data (eg, arboviral
infections). Urgent operational decisions, such as the choice between delivering piperonyl butoxide and pyrethroid bednets versus standard pyrethroid only bednets for malaria control were also given priority.

In Burkina Faso, a specially convened meeting by the decision unit was arranged to prioritise the research policy themes in alignment to the national and MoH research priorities, PIIVeC objectives and comprehensive approach to VC. In Malawi, the group held a session to identify themes that were aligned to the MoH research strategic plan and prioritise them based on gaps in funding availability in the respective disease programmes, meaning that malaria was given a low priority relative to other VBDs.

After consolidating the gaps into sets of priority policy themes (online supplemental table S1), the secretariats launched competitive calls to attract national researchers. The selection of project proposals was based on relevance, feasibility, impact, individual and institutional capacity and budget appropriateness. After establishing the groups, it took Burkina Faso 11 months to make the first OR call, while Cameroon launched a first call after 4 months, and a further call after 21 months. Malawi made the first OR call after 7 months, however, the limited applications received were more focused on individual capacity strengthening. Plans were made to relaunch the call with a greater emphasis placed on dialogue between applicants and the group to support
Academic research evidence

Academic research evidence was produced by a cohort of fellows and ECRs embedded in each country and supported by a professional development scheme (stream 2, figure 1). The fellows were recruited via competitive country-led processes in which postdoctoral researchers applied in response to broad thematic research questions aligned with key VBD research priorities. Each fellow developed their own research budget (within a ceiling), which included provision for appointment of ECRs (commonly MSc or PhD candidates) to address subcomponents of their research.

A total of 26 research projects were conducted by both fellows (n=11) and ECRs (n=15) in the three countries comprising 16 implementation and 10 basic research projects (online supplemental table S1). Malaria featured heavily in the portfolio of the fellows and ECRs with five (5/26, 19%) fellows’ projects focused on malaria or, malaria and lymphatic filariasis, and nine ECR (9/26, 35%) projects focused on malaria.

In addition to the preliminary policy and evidence uptake training conducted in October 2018 (described in Stakeholder analysis and engagement), the fellows received a 1-day virtual training focused on policy brief development in September 2020. This resulted in two policy briefs ((https://www.piivec.org/resources/the-role-of-vector-control-in-preventing-and-responding-to-rhodesian-human-african) and (https://www.piivec.org/resources/evidence-to-inform-how-new-bed-nets-can-be-used-to-prevent-malaria-in-malawi)) and a further four briefs in development. Two Malawian fellows became members of the malaria National VC TWG, and a Burkinabe fellow was involved in revising the national arbovirus control strategy.

SOUTH-SOUTH ENGAGEMENT

The concept of a south-south engagement unit emerged at the programme’s annual meeting in September 2019. The aim was to bring together southern partners including national PIs and coordinators for virtual monthly meetings to share experiences and identify synergies for collaborations. For example, this resulted in two fellows from Burkina Faso and Cameroon to collaborate on their similar projects. Unfortunately, these meetings were affected by many factors such as competing priorities, workload and intermittent internet connectivity, and only 5 out of a possible 23 monthly meetings were held. This was potentially a missed opportunity to strengthen partnerships among southern institutions to jointly conduct research of greater regional impact. It should be noted however that all southern partner institutions had representation in the programme’s management board, hence this was not the only mechanism for south-south engagement. Additionally, the collaboration between AFIDEP and all the African research partners will be maintained via a number of follow-on projects.

REFLECTIONS ON LESSONS LEARNT

KT requires a mix of research and policy engagement skills

Mallidou et al. articulate the core competences of KT champions, and the need for tailored hands-on trainings to strengthen these skills. Our experiences highlight the importance of identifying individuals with the technical expertise, research experience and policy engagement skills needed to facilitate KT. In line with Mallidou et al., we found that individuals with the critical skill mix were in short supply, especially in Malawi where we had to use the PI in this role.10 It seems that hiring well positioned, influential and established people to be the KT champions potentially avoided a challenge identified by a district level knowledge-brokering programme in Burkina Faso, where the broker had to become accepted before they were heard.16 Within the Groups, a skill mix was achieved by bringing together actors from government, academic and other sectors. The coordinators played critical roles in identifying potential group members, and the opportunity to share and discuss their plans resulted in changes to the planned sizes (smaller than originally intended for some countries) and composition (more diverse) of Groups, suggesting an added benefit of working across multiple countries.

Capacity strengthening in KT supports planned and opportunistic engagement opportunities

Strong networks linking researchers to policy-makers, technical expertise in the health-research domain and expertise in KT approaches are key to enhancing translation of research into useful formats for policy and operational decision makers. We used a tailored programme of capacity strengthening to develop the skills of researchers and ensure effective KT, which is prerequisite for similar efforts in immunisation advisory groups.17 Training and support underpinned the development of policy engagement strategies, which encouraged researchers to identify and engage key stakeholders from the start of their research. Policy briefs are useful and effective non-academic knowledge transfer strategies, and the ability to develop them is essential for researchers to facilitate evidence-use in policy.18 19 Our researchers were equipped with skills to develop policy briefs to frame issues and share findings, a skill which they will likely hone and develop throughout their careers. This concurs with Dagenais who observed that the inability for researchers to craft and communicate policy recommendations from research is an obstacle to
evidence-use. Thus, they recommended targeted capacity strengthening of researchers in communication of findings to decision-makers, who inherently have challenges in accessing and deciphering scientific evidence.16

Other KT efforts have recommended or provided capacity strengthening to ‘consumers’ of research, for example, by training advisory group members in research and use of evidence.20–22 We did not provide formal training to Group members, however it is likely that the strategy of engaging them in commissioning research also aided their understanding of research methods and design. On the other hand, given there was no uptake for the available programme expertise in rapid reviews, perhaps we needed to invest in awareness raising and capacity strengthening to inform decision makers how this type of research could be useful in their decision-making context. This was planned in the form of face-to-face meeting and discussion with wider group members on what the programme could offer, unfortunately prevented by COVID-19 pandemic.

Secondment programmes have been identified as providing increased interaction at inter-organisational level, in support of policy engagement.23–24 Our global secondment activities did not happen as we anticipated. This may have been an overambitious strategy given the duration of the programme and the lack of previous exposure to global level institutions in our fellow cohorts. However, many more of the fellows are now ready for this step than at the start of the programme and we remain convinced that greater representation of African scientists within global institutions is essential per se, to enhance KT and to ensure policies are more effective and sustainable.

Responsiveness and adaptability to dynamic context is critical

KT efforts in immunisation have recognised the importance of identifying existing advisory groups to avoid duplication and tension when similar groups exist.25 Our experience also indicates the importance of identifying existing advisory groups and carefully weighing the options to either expand their scope or establish new groups. We did this using formal stakeholder analysis and qualitative methods, which helped us to uncover pre-existing power relationships that may have affected impact and sustainability. Lessons learnt from immunisation advisory groups also emphasise the importance of context and adaptability, and affirm that ‘one-size cannot fit all’.26–28

We also found that the appropriate model will be diverse in different countries, and can change over time within a country, and echo the importance of adapting processes and governance to dynamic national contexts for successful KT.19–21 The timelines for our policy engagement work were impacted by turnover of key ministers29 periods of political uncertainty and the COVID-19 pandemic. Although the timing and exact nature of these events is not predictable, it is highly likely that such setbacks will occur and therefore risk management and mitigation plans which consider this would be worthwhile.

Regional collaborations

Regional bodies including the Economic Commission of the West African States and West African Health Organisation (WAHO) have been actively promoting evidence-based health policies19–21 and regional-level consultative committees comprising experienced researchers and policy-makers have also been proposed as a strategy to address ‘ceaseless management turnover’ and provide stronger coordination.21 We had planned to embark on a series of face-to-face discussions with Regional actors including Africa Centres for Disease Control and Prevention, WAHO and others to identify regional level opportunities for KT on VC and capacity strengthening, however, this was prevented by COVID-19. More positively, the Pan African Mosquito Control Association (PAMCA) which has chapters in a growing number of countries, is supporting efforts to continue and expand the advisory Group model. PAMCA has funding from the Bill and Melinda Gates foundation which will be used to support and expand the groups’ activities in Burkina Faso and Cameroon, (other research funds are being used in Malawi where a PAMCA chapter has recently been opened). Colleagues from the Cameroon PAMCA chapter will also be providing technical advice to the Central African Republic PAMCA chapter to support them to setup an advisory group.

National health agendas should be formulated in parallel with national research agendas

Evidence that responds to country needs is more likely to be translated30 and involving national programme managers in prioritising evidence gaps promotes ownership and political will that increases evidence-use.24 In-line with suggestions by other authors,19 our efforts to increase the evidence base on VBD control through OR were initiated by involving national disease control programmes to determine evidence gaps, commission the research (with PiVc funding) and engage with the process of conducting it. These efforts were conducted in parallel with our KT efforts, and countries invested substantial time in commissioning research from domestic research institutions, including those that were not consortium partners. This demonstrates how governments and national research institutions can work together to produce relevant, timely research to support policy agendas, while also leveraging and strengthening domestic research capacity, if funds are available to support this process.

We acknowledge the influence of the three different contexts on evidence generation and use. Differences were observed in progress of key activities which could be related to the interaction of context, governance models and country capacity. For example, Cameroon, with a Group managed outside of the MoH and additional
staffing within the coordination team, made two OR calls while Burkina Faso made one call and Malawi was unable to complete the process. This could in part be attributed to the swifter decision-making processes outside of a public system, which benefitted Cameroon. At the time of writing, the government of Cameroon had signalled its desire to take on ownership of the Group in partnership with CRID and MoHs and agriculture; it will be interesting to see if this happens and how it may affect the speed and impact of activities. In Burkina Faso, our influential coordinator and the fact that the consortium partner is within the MoH enabled effective navigation through bureaucracy, in spite of political changes, suggesting that working within government can be an effective strategy. In Malawi, the externally affiliated coordinator had minimal influence within the government bureaucracy but relied on the government Ex Officio included in the group for follow-ups within the MoH. Political uncertainty, staff/minister turnover and COVID-19 affected progress in all countries.

It seems likely that the progress made by our groups hinged both on government support for evidence-use in decision making and, on our programme having resources to commission and fund relevant research. While continuation funding has been secured, it is notable that this is again from research grants. More effective and routine KT requires governments in low-income countries to mobilise more domestic resources rather than relying on external partners to fund research. This will need to be complemented by external funding to implement the research findings.

Long-term follow-up than our project funding allowed would be needed to answer key questions about the sustainability and impact of the KT and evidence generation strategies in the three contexts including: Will the Groups be sustainable in the absence of research grant funding? What is the impact of KT activities on national and global policy for VC? What are the best strategies to increase the influence of nationally generated evidence and African researchers in global VBD policy making?

CONCLUSION
Promoting evidence-use in policy and practice requires ongoing engagement of evidence generators and users and the involvement of relevant stakeholders in developing research agendas increases the likelihood of evidence-use in policy and practice. The PIIVeC programme used this approach to support efforts to tackle VBD in Burkina Faso, Cameroon and Malawi.

Our strategy hinged on establishing groups that commissioned OR and promoted evidence-use by engaging key stakeholders. This required a suitable coordinator; consideration of contextual factors to determine group governance and composition; flexibility and adaptability. Strengthening researchers’ capacity to do policy engagement equipped them to transfer their knowledge on preplanned and opportunistic policy engagement activities. The countries present three differing contexts with longer-term research and evaluation necessary to draw conclusions on impact. There is a need for adaptability and flexibility, rather than rigid one-size-fits all approaches, to facilitate evolution in governance, ownership and leadership of KTPs.

ACKNOWLEDGEMENTS We acknowledge the technical contribution of Justin Pufford in guiding the paper’s structure.

REFERENCES

Author affiliations
1. Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
2. Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
3. Centre for Research in Infectious Diseases, Yaoundé, Cameroon
4. Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
5. Centre for Capacity Research, International Public Health Department, Liverpool School of Tropical Medicine, Liverpool, UK
6. Institut de Recherche en Sciences de la Santé, Ouagadougou, Burkina Faso
7. African Institute for Development Policy, Lilongwe, Malawi
8. African Institute for Development Policy, Nairobi, Kenya

ORCID iDs
Chikondi Andrew Mwendera http://orcid.org/0000-0003-1513-7088
Eve Worrall http://orcid.org/0000-0001-9147-3388

BMJ Glob Health: first published as 10.1136/bmjgh-2021-008378 on 11 May 2022. Downloaded from http://gh.bmj.com/ on May 18, 2022 by guest. Protected by copyright.

Supplementary table 1: Overview of research supported by the PIIVeC programme in Burkina Faso, Cameroon, and Malawi

<table>
<thead>
<tr>
<th>Total research projects at each level (N=49)</th>
<th>Policy themes (P) for operational research and the research projects (R)</th>
<th>Research type*</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkina Faso (n=12)</td>
<td></td>
<td>Operational</td>
<td>IRSS³</td>
</tr>
<tr>
<td>Operational research commissioned by TVCAG² (n=4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaria & dengue</td>
<td>P: Evaluation of endogenous knowledge and practices in vector control (Contribution of endogenous knowledge in the management of neglected tropical diseases (NTDs), investigation of substances having an impact on NTDs impact of bio-pesticides in vector control)</td>
<td>Operational</td>
<td>IRSS³</td>
</tr>
<tr>
<td>Dengue</td>
<td>P: Community integration/integration system or the involvement of urban communities in the fight against dengue fever and other vector-borne diseases: ownership of the fight by the population</td>
<td>Operational</td>
<td>IRSS³</td>
</tr>
<tr>
<td>Cross cutting all VBDs²</td>
<td>P: Assessing the impact of herbicide and disinfectant use on vector resistance</td>
<td>Operational</td>
<td>IRSS³</td>
</tr>
<tr>
<td>Cross cutting all VBDs²</td>
<td>P: Take stock of pesticides used in agriculture and health and investigate the flow of insecticides in Burkina Faso</td>
<td>Operational</td>
<td>IRSS³</td>
</tr>
<tr>
<td>Arboviral infections**</td>
<td>R: Peri-domestic ecology and behaviour of Aedes aegypti: A West African evidence base for effective control of urban arboviruses</td>
<td>Implementation</td>
<td>CNRF²⁴</td>
</tr>
<tr>
<td>Malaria & filariasis</td>
<td>R: Impact of native Woldbachia symbiots in host mosquito Anopheles gambiae s.l.</td>
<td>Basic</td>
<td>IRSS³</td>
</tr>
<tr>
<td>Cross cutting all VBDs²</td>
<td>R: Analysis of financing mechanisms for vector-borne diseases control in Burkina Faso</td>
<td>Implementation</td>
<td>CNRF²⁴</td>
</tr>
<tr>
<td>Onchocerciasis</td>
<td>R: Development of efficient traps and targets for the xenomonitoring of the population of Simulium damnosum s.l. in the south-west region of Burkina Faso</td>
<td>Implementation</td>
<td>IRSS³</td>
</tr>
<tr>
<td>Cameroon (n=21)</td>
<td></td>
<td>Operational</td>
<td>PNLP⁶</td>
</tr>
<tr>
<td>Operational research commissioned by TVCAG² first call (n=7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaria</td>
<td>P: Assessment of the efficacy of new insecticide-treated nets to be distributed in mass campaign in 2019 against major malaria vectors in Cameroon</td>
<td>Operational</td>
<td>CRID⁷</td>
</tr>
<tr>
<td>Malaria</td>
<td>R: Evaluation of the quality control of the LLINs¹ of the 2019 campaign in four zones of Cameroon</td>
<td>Operational</td>
<td>CRID⁷</td>
</tr>
<tr>
<td>Arboviral infections**</td>
<td>R: Circulation of arbovirus and behaviour of main vectors.</td>
<td>Operational</td>
<td>CRID⁷</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>R: Arboviruses circulation in rural Cameroon and behaviour of their main vectors</td>
<td>Operational</td>
<td>CRID⁷</td>
</tr>
<tr>
<td>Malaria</td>
<td>R: Characterization of microbiome of Anopheles gambiae s.l in a biological control perspective in Burkina Faso</td>
<td>Basic</td>
<td>IRSS³</td>
</tr>
<tr>
<td>Malaria</td>
<td>R: Analysis of malaria effect on the performance of the cotton sector: Spill over effects on Industry and Trade in Burkina Faso.</td>
<td>Implementation</td>
<td>CNRF²⁴</td>
</tr>
<tr>
<td>Onchocerciasis</td>
<td>R: Characterization and mapping of blackflies breeding sites for geographically targeted vector control perspective to accelerate onchocerciasis elimination in Burkina Faso</td>
<td>Implementation</td>
<td>IRSS³</td>
</tr>
</tbody>
</table>

Note: BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s). BMJ Global Health 2022;7:e008378. doi: 10.1136/bmjgh-2021-008378
<table>
<thead>
<tr>
<th>Research types</th>
<th>Malawi (n=10)</th>
</tr>
</thead>
</table>
| Filariasis | P: Conducting a pilot study to reduce *Simulium* densities in highly infected sites
R: Pilot study on the ground larviciding using Temephos to control S. damnosum in the Nkam drainage system at the Solleh health area (Health District) in the Littoral region |
| Leshmaniasis | P: Identifying Leishmania species responsible of clinical forms of leishmaniasis in North Cameroon
R: Prevalence and identification of Leishmania species responsible for Visceral leishmaniasis in Northern Cameroon |
| HAT¹¹ | P: Assessing risk of resurgence of Human Africa Trypanosomiasis in dormant foci through vector surveillance
R: Screening of trypanosomes and feeding behaviour of tsetse flies in two dormant sleeping foci of Cameroon: implication for the implementation of vector control |
| HAT¹¹ | R: Microgeographic structure, vector control and population dynamics of *Glossina palpalis palpalis*: Impact on human and animal trypanosomiases in the Campo focus, southern Cameroon |
| Malaria & filariasis | R: Molecular markers of metabolic resistance to pyrethroids in *Anopheles coluzzii*, major malaria vector
Malaria & filariasis | R: Impact of vector symbionts on malaria transmission and control in Cameroon
HAT¹¹ | R: Genetic diversity of the tsetse fly microbe: Implication in new strategies to control trypanosomiasis |
| Malaria | R: Genetic diversity of CYP6M2 promoter and its possible association with permethrin resistance pattern in *Anopheles gambiae* s.s populations from Cameroon
Malaria | R: Distribution and genetic diversity of *Anasia sp.* in anopheles mosquitoes in Cameroon |

<table>
<thead>
<tr>
<th>Research types</th>
<th>Malawi (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational research policy themes</td>
<td>Malawi</td>
</tr>
</tbody>
</table>
| Open | P: Innovative vector control interventions in such diseases as malaria, HAT and Schistosomiasis
Open | P: Cost and cost-effectiveness of current vector control interventions being implemented alone or in combination
Cross cutting | P: Human and social factors that affect VBD control and eventual elimination |
| Open | P: Vector biomcics, distribution, and disease transmission factors |

<table>
<thead>
<tr>
<th>Research types</th>
<th>Malawi (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria</td>
<td>R: Evaluation of chlorfenapyr indoor residual spray formulation in reducing host seeking and blood feeding propensity in anopheles mosquitoes</td>
</tr>
</tbody>
</table>
| Malaria | R: Host feeding preference of Anopheles mosquitoes in Chikwawa and Dedza, Malawi
Malaria | R: Assessing resting behaviours of anopheles mosquitoes inside houses in Chikwawa district, Malawi |
| Malaria | R: Assessing three trapping methods for sampling host seeking malaria vectors in Chikwawa |
| HAT¹¹ | R: Determination of bloodmeal origins of tsetse from Vwaza Marsh Reserve, Malawi
HAT¹¹ | R: Determination of trypanosome species and infection rates in tsetse flies from Vwaza and surrounding areas, north Malawi |

¹VBD: Vector Borne Diseases; 2^{Technical} Vector Control Advisory Group; 3IRSS: Institut de Recherche en Sciences de la Santé (IRSS) (Institute for Research in Health Sciences); 4CNRFP: Centre National de Recherche et de Formation sur le Paludisme (National Centre for Research and Training on Malaria); 5RCDFs: Research Career Development Fellows; 6ECRs – Early Career Researchers; 7LLNs: long-lasting Insecticidal Nets; 8PNLP: Programme National de Lutte contre le Paludisme, (National Program for the Fight Against Malaria); 9CRID: Centre for Research in Infectious Diseases; 10^{VC}: Vector Control; 11^{HAT}: Human African Trypanosomiasis; 12CRFilMT: Centre for Research on Filariasis and other Tropical Diseases; 13MAC: Malaria Alert Centre; 14^{IRS}: Indoor Residual Spraying.
Research types include Basic research, which is sometimes called fundamental, pure, or curiosity-driven, is experimental and theoretical in nature with the purpose of creating new knowledge. It includes pharmacology, microbiology, biochemistry, physiology, and genetics investigations; Implementation research is a type of research whose findings are mainly used to scale up interventions or complements the rolling out of a new policy. It provides a general strategy of intervention implementation for increased access to the target population. This research promotes an intervention whose efficacy has been proven by other research and explores innovative strategies for wider implementation; Operational research is a type of research that tends to be context-specific and addresses a specific local health problem threatening local disease control programmes. It is characterised by a stem problem-solving emphasis and its significance for rapid uptake of the research findings. Note: Only policy research themes are listed in the table for Malawi since individual operational research projects were not selected.
Appendix 1: Stakeholder analysis matrix

Worksheet: Analysing Stakeholders for PHIVC
Please refer to the guide for direction on completing the below.

PRELIMINARY

<table>
<thead>
<tr>
<th>NAME OF PERSON COMPLETING</th>
<th>ID</th>
<th>AIM OF ANALYSIS: Identify stakeholders interested in the issue</th>
<th>ANALYSIS PERIOD START</th>
<th>ANALYSIS PERIOD END</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEP 1: STAKEHOLDERS

Identify all stakeholders interested or associated with your issue

<table>
<thead>
<tr>
<th>ACTOR TYPE: (INSTITUTION OR INDIVIDUAL)</th>
<th>INSTITUTION ACRONYM or INDIVIDUAL NAME</th>
<th>ROLE (GENERAL)</th>
<th>CATEGORY</th>
<th>CURRENT INVOLVEMENT (ROLE IN KEY ISSUES)</th>
<th>CURRENT INTEREST</th>
<th>CURRENT INFLUENCE</th>
<th>CURRENT POSITION</th>
<th>IMPACT OF ISSUE ON ACTOR</th>
<th>ACTUAL POWER STATUS</th>
<th>ACTUAL INTEREST STATUS</th>
<th>DESIRED POWER STATUS</th>
<th>DESIRED INTEREST STATUS</th>
<th>PROPOSED INTERVENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

STEP 2: CHARACTERISTICS

Analyse the characteristics of your stakeholders

<table>
<thead>
<tr>
<th>ACTOR TYPE: (INSTITUTION OR INDIVIDUAL)</th>
<th>INSTITUTION ACRONYM or INDIVIDUAL NAME</th>
<th>ROLE (GENERAL)</th>
<th>CATEGORY</th>
<th>CURRENT INVOLVEMENT (ROLE IN KEY ISSUES)</th>
<th>CURRENT INTEREST</th>
<th>CURRENT INFLUENCE</th>
<th>CURRENT POSITION</th>
<th>IMPACT OF ISSUE ON ACTOR</th>
<th>ACTUAL POWER STATUS</th>
<th>ACTUAL INTEREST STATUS</th>
<th>DESIRED POWER STATUS</th>
<th>DESIRED INTEREST STATUS</th>
<th>PROPOSED INTERVENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

STEP 3: POWER-INTEREST MATRIX

Map stakeholders on the power-interest matrix

<table>
<thead>
<tr>
<th>ACTOR TYPE: (INSTITUTION OR INDIVIDUAL)</th>
<th>INSTITUTION ACRONYM or INDIVIDUAL NAME</th>
<th>ROLE (GENERAL)</th>
<th>CATEGORY</th>
<th>CURRENT INVOLVEMENT (ROLE IN KEY ISSUES)</th>
<th>CURRENT INTEREST</th>
<th>CURRENT INFLUENCE</th>
<th>CURRENT POSITION</th>
<th>IMPACT OF ISSUE ON ACTOR</th>
<th>ACTUAL POWER STATUS</th>
<th>ACTUAL INTEREST STATUS</th>
<th>DESIRED POWER STATUS</th>
<th>DESIRED INTEREST STATUS</th>
<th>PROPOSED INTERVENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

STEP 4: INTERVENTIONS

For priority stakeholders, mapping pathways of change and identifying interventions

<table>
<thead>
<tr>
<th>ACTOR TYPE: (INSTITUTION OR INDIVIDUAL)</th>
<th>INSTITUTION ACRONYM or INDIVIDUAL NAME</th>
<th>ROLE (GENERAL)</th>
<th>CATEGORY</th>
<th>CURRENT INVOLVEMENT (ROLE IN KEY ISSUES)</th>
<th>CURRENT INTEREST</th>
<th>CURRENT INFLUENCE</th>
<th>CURRENT POSITION</th>
<th>IMPACT OF ISSUE ON ACTOR</th>
<th>ACTUAL POWER STATUS</th>
<th>ACTUAL INTEREST STATUS</th>
<th>DESIRED POWER STATUS</th>
<th>DESIRED INTEREST STATUS</th>
<th>PROPOSED INTERVENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>