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imputed for each bootstrap iteration such that the probability of the imputed race being 𝑘 is 𝑤𝑖𝑘. The 

confidence intervals were obtained from the quantiles of the set of 1 000 bootstrapped parameters. 

 

2 Geospatial analysis 

2.1 Model description  

We used a Bayesian hierarchical model to compute the relative risk of hospitalisation at the municipality 

level for São Paulo state (n= 645) and at the census tract level for the greater metropolitan area of São 

Paulo (GMSP: n=30 815). The number of observed cases 𝑌𝑖 in an area 𝑖 is modelled using a Poisson 

distribution 𝑌𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖) with mean 𝜆𝑖 = 𝐸𝑖 𝜇𝑖 where 𝐸𝑖 is the expected number of cases in area i 

under a null model in which cases are uniformly distributed among the population, i.e., the number of 

cases in a given area is proportional to the population of that area. For each area 𝑖, this is given by 𝐸𝑖 = ∑ 𝑌𝑖𝑖∑ 𝑝𝑜𝑝𝑖 𝑖 × 𝑝𝑜𝑝𝑖 , where 𝑝𝑜𝑝𝑖 is the population in area 𝑖. The factor of 𝜇𝑖 describes the area-specific risk 

and models the additional variation in the observation process 2. 

 

To quantify the uncertainty in the point estimates of the mean relative risk estimates, we mapped the 

posterior probability of elevated relative risk in each area (Appendix B - Figure S7). This is the posterior 

probability that a tract has an elevated risk of observing cases, formally P(𝜇𝑖 > 1| data). For instance, a 

posterior probability of 0.6 in an area indicates a 60% chance that this area is at greater risk of observing 

cases.  

 

2.2 Modelling relative risk  

We fit a log-linear model to estimate the relative risk 𝜇𝑖, which is modelled as the sum of an intercept 
and random effects. Random effects are broken into the spatial (𝐴𝑖) and temporal components (𝐵𝑖), as 
shown in Eq. (1·1):  

 log(𝜇𝑖) = 𝛼 + 𝐴𝑖 + 𝐵𝑖 (1·1) log(𝜇𝑖) = 𝛼 + 𝑈𝑖 + 𝑉𝑖 + 𝛾𝑡 +𝜙𝑡  (1·2) 

 

To account for existing spatial autocorrelation, we used a Besag-York-Mollié model (BYM) 3 to 

separate the spatial component into spatially structured 𝑈𝑖 , and non-spatial, unstructured random 

effects, 𝑉𝑖, so (𝐴𝑖 = 𝑈𝑖 + 𝑉𝑖), as shown in Eq. 1·2. In the BYM model, a conditional autoregressive 

(CAR) process is used to introduce correlation among the 𝑈𝑖  for each tract. Given the 𝑈𝑖  of neighbouring 

areas, the 𝑈𝑖  has a normal distribution with mean equal to the average of the neighbours’ 𝑈𝑖 , and 

variance   𝑠𝑖2 = 1#𝑁(𝑖)𝜏𝑈 where #𝑁(𝑖) is the number of areas that share boundaries with area 𝑖 and 𝜏𝑈 is 

a precision parameter. The random effect, 𝑉𝑖 follows a zero mean normal distribution with precision 

parameter, 𝜏𝑉=
1𝜎𝑣2  (where 𝜎𝑉2 is the variance). Both random effects in the model capture extra-Poisson 

variability, and were expressed as the following: 

     𝑈𝑖| 𝑈𝑗≠𝑖~𝒩(𝑚𝑖 , 𝑠𝑖2),    𝑉𝑖 ~ 𝒩(0, 𝜎𝑣2) 
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𝑚𝑖 = ∑ 𝑈𝑗𝑗∈𝑁(𝑖)#𝑁(𝑖)   ,    𝑠𝑖2 = 𝜎𝑈2#𝑁(𝑖) = 1#𝑁(𝑖)𝜏𝑈  
 

To account for temporal structure in the data, we included the random effect (𝐵𝑡 = 𝛾𝑡 +𝜙𝑡), which 

assumes that the number of cases observed in a given area depends on the number of cases observed in 

the given area in the previous month and a residual 2,4. The temporal component includes 𝛾𝑡, a 

temporally structured effect modelled dynamically using a random walk of order 1, and an unstructured 

temporal effect 𝜙𝑡  to account for independent time effects, which follows a zero mean normal 

distribution. Both are expressed as the following: 

 𝛾𝑡|𝛾𝑡−1~𝒩(𝛾𝑡−1, 1𝜏𝛾) 

𝜙𝑡~𝒩 (0, 1𝜏𝜙) 

 

We adopted minimally informative prior distributions in R-INLA 3. The log of the precision parameters 

adopted for the spatial effects, 𝜏𝑈  and 𝜏𝑉 , follows a gamma distribution with shape 1 and rate 0·0005. 

The precision parameter for both the structured and unstructured temporal effects 𝜏𝛾 and 𝜏𝜙  also 

follows a gamma distribution, with shape 1 and rate 0·001. The prior default distributions in R-INLA, 

which are the recommended settings 4, were also used for the precision parameters of both 𝑈𝑖 , 𝑉𝑖, 𝛾𝑡, 
and 𝜙𝑡.  
 

2.3 Ecological regression 

To evaluate the effects of socioeconomic covariates on the risk of hospitalisation at the municipality 

level, we reformulated our model expressed by Eq. 1·3 by adding a fixed effect, which we refer as the 

ecological regression model. The log of the relative risk is given by the following:  

 log(𝜇𝑖) = 𝛼 + 𝑈𝑖 + 𝑉𝑖 + 𝛾𝑡 + 𝜙𝑡 + 𝑋𝑖𝑘′  𝛽 (1·3) 

 

where 𝑋𝑖𝑘′  is the 𝑖 th row and 𝑘th column of covariates matrix 𝑋 based on the socioeconomic covariates 

for each municipality and month, and 𝛽 is the regression parameter modelled as fixed effects with 

normal priors (𝛽~𝒩(0, 100) ) . 
 

Here, we define 𝑈𝑖  using a graphical structure in R-INLA which describes the connections between 

municipalities by looking at estimates of the level of human mobility between them in the state of São 

Paulo. We considered two municipalities to be connected if there were at least 550 journeys between 

them. This threshold was selected to ensure that the sparsity of the connectivity matrix was similar to 

the nearest neighbour matrix described in Section 3·2. The number of origin-destination journeys 

between municipalities are retrieved from processed mobile geo-location data obtained from the In Loco 

company described elsewhere 5. The prior default distributions in R-INLA were used for the precision 

parameters of both 𝑈𝑖 , 𝑉𝑖, 𝛾𝑡, and 𝜙𝑡. 
 

2.4 Computational method 

We carried out model fitting with R-INLA which uses an Iterated Nested Laplace Approximation 

(INLA) based on a combination of analytical approximations and numerical integration to estimate 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Global Health

 doi: 10.1136/bmjgh-2021-004959:e004959. 6 2021;BMJ Global Health, et al. Li SL



 8 

posterior distributions 6. INLA was designed as an efficient alternative to Markov Chain Monte Carlo 

(MCMC), which is both computationally and time-intensive when applied to a large amount of data. It 

can be suitably applied to latent Gaussian models including generalised linear models to spatial and 

spatio-temporal models.  

 

2.5 Model evaluation  

We evaluated our model by plotting the empirical relative risk in each area against the fitted risk 

determined by our model (Figure A1). The empirical relative risk was calculated by weighting the total 

number of observed cases in a given municipality, with municipality level population as a proportion 

of the entire state of São Paulo (defined as offset). A density plot illustrating the distribution of empirical 

versus predicted risk was also created to assess model fit (Figure A2).  

 

 
Figure A1. Empirical vs. fitted risk  
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Figure A2. The estimated value of the log-risk for each area closely matches the observed risk in each 

area. 

 

2.6 Covariates 

 

2.6.1 2010 census 

Data on socioeconomic covariates used in the ecological regression at the municipality level were 

obtained from the 2010 population census compiled by the Brazilian Institute of Geography and 

Statistics (IBGE) 7.These data include the average household income per capita, housing density 

(number of private households/km2), sanitation conditions (proportion of population with access to 

piped water, access to sewage network, and/or access to septic tank), percentage of urban and rural 

population, and income inequality measured with the Gini index.  

 

To our knowledge, this is the most complete and recent socioeconomic dataset available for Brazil at 

our required spatial resolution since no census was carried out in 2020. To assess the variability of some 

of these covariates over a ten year period, we obtained the same socioeconomic data from the 2000 

IBGE census. We compared the same covariates by plotting them at the municipality level for a small 

sample (in this case, we decided to extract the 39 municipalities in RMSP) (Figure A3). We observed a 

general trend of increase in income per capita, household density, and number of residents per 

household, at the municipality level, between 2000 and 2010. Given the inconsistent variation in 

population access to piped water, septic tank, and sewage network by municipality over the 10-year 

time frame, we decided to omit these variables from the analysis. 

 

To improve accuracy, we decided to compute population density (people/km2) at the census tract level, 

then aggregating it for each municipality, instead of using household density. This was calculated by 

dividing the total resident population by the area of each census tract using data retrieved from the 2010 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Global Health

 doi: 10.1136/bmjgh-2021-004959:e004959. 6 2021;BMJ Global Health, et al. Li SL



 10 

census. For large census tracts (with area greater than 0·12 km2), we considered the occupied area rather 

than the total area of the census tract. This was done to improve the accuracy of population density 

estimates in large census tracts, particularly for those located in rural areas, by focusing only on human 

habitats. Human occupied areas were identified based on population counts from a fine regular grid of 

200 meters, which was generated by IBGE for the 2010 census using fieldwork and satellite imagery 

data. 

 

We checked for multicollinearity by assessing the correlation between variables and computing the 

variation inflation factor (VIF) of each covariate. Based on these tests, we removed the proportion of 

informal workers and unemployment from our final model to avoid multicollinearity with the variables 

on household density and income per capita.  

 

2.6.2 Distance to the nearest health facility 

We have also computed mean distance to the nearest health facility of each municipality. To do this, 

we calculated the road network distance from the centroid of each census tract to the nearest healthcare 

facility in R with the dodgr package 8. We considered all the 830 healthcare facilities registered in the 

SIVE-Gripe database in São Paulo state that hospitalised SARI patients via the Unified Health System 

(SUS). 

 

 

 
Figure A3. Trends in covariate values between 2000 and 2010. Each coloured line represents a 

municipality within the GMSP (n= 39).  

 

2.7 Spatial joins for the GMSP 

To improve the accuracy of modelling small areas for the RMSP, we performed spatial joins of census 

tracts to ensure that each census tract had at least one SARI case. Spatial joins were performed by 

selecting the census tract with the smallest population and joining it to its nearest neighbour (determined 

by the shortest distance between centroids). This was repeated until all tracts had at least one case of 

SARI.  
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3 Probability of working conditions 

 

We used PNAD COVID-19 data from May to September 2020. During this period, 1 888 560 

individuals were interviewed, of whom 171 480 were living in São Paulo state. For each individual, the 

PNAD COVID-19 survey also collects self-reported data on access to COVID-19 testing and 

comorbidities. From July, August, and September 2020, interviewees were also asked about 

comorbidities. 

 

In the PNAD COVID-19 survey, work status is a categorical variable that can assume four values: face-

to-face, telework, paid leave, and unpaid leave. We model the conditional probabilities using a 

multinomial logistic regression. 

 P(𝑦𝑖 = 𝑚|𝒙𝑖) = exp(𝒙𝑖𝜷𝑚)∑ exp(𝒙𝑖𝜷𝑗)4𝑗=1  

 P(𝑦𝑖 = 𝑚|𝒙𝑖) represents the probability that, for the individual 𝑖, the variable Work Status (𝑦) will 

assume a particular value 𝑚, given a 𝑘 × 1 vector 𝒙𝑖  of explanatory variables and an intercept. The 

letter 𝑗 varies from 1 to 4 and indexes the four categories of Work Status. 𝜷𝑗 is a vector of coefficients 

for the category 𝑗. The reference category (𝑗 = 1) is Face-to-Face work and, by construction, 𝜷1 = 𝟎. 

So, the estimated vector of parameters �̂� is 3𝑘 × 1 dimensional: 

 

�̂� = [�̂�𝑻�̂�𝑷�̂�𝑼] 
 

Where �̂�T⏟𝑘×1 = �̂�Telework|Face-to-face, �̂�P⏟𝑘×1 = �̂�Paid leave|Face-to-face, and �̂�U⏟𝑘×1 = �̂�Unpaid leave|Face-to-face.  

 

We estimated four different nested models, by adding explanatory variables stepwise. Model 0 has race, 

sex (a dummy variable) and age (a 3rd degree orthogonal polynomial). Model 1 adds education, Model 

2 adds occupation (ISCO-08 1-digit groups – see Table A2) and a dummy variable for (in)formality, 

Model 3 adds dummy variables for the months the observations were collected in PNAD COVID-19. 

 

In order to calculate predicted probabilities, we let the variable of interest (e.g., race) to vary and set all 

other explanatory variables to their grand mean. This way, all the probability differences between 

categories (e.g. White, Black, Pardo, and Asian) are due to changes in the variable of interest.  

 

Models were estimated taking into account the Complex Sample Design of PNAD COVID-19. So, the 

Variance-Covariance Matrix of the Coefficients already take into account heteroskedasticity and 

autocorrelation between observations. Confidence intervals for the predicted probabilities were 

calculated by parametric bootstrapping. By the Central Limit Theorem, the estimated coefficients 

follow a Multivariate Normal Distribution: 

 �̂�~𝒩(𝜷, 𝚺𝛽) 
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Using �̂� as the mean and �̂�𝛽⏟3𝑘×3𝑘as the variance-covariance matrix, we simulated 2 000 samples of 

coefficients. We organized the simulated coefficients for each category of dependent variable in 

separate matrices: �̂�T
𝑠𝑖𝑚⏟2000×𝑘, �̂�P

𝑠𝑖𝑚⏟2000×𝑘, and �̂�U
𝑠𝑖𝑚⏟2000×𝑘. For a given vector of observations 𝒙, a distribution of 

fitted values can be calculated as: 𝒙⏟1×𝑘 (�̂�T
𝑠𝑖𝑚)𝑇⏟    𝑘×2000 = �̂�T

𝑠𝑖𝑚⏟1×2000 𝒙⏟1×𝑘 (�̂�P
𝑠𝑖𝑚)𝑇⏟    𝑘×2000 = �̂�P

𝑠𝑖𝑚⏟1×2000 𝒙⏟1×𝑘 (�̂�U
𝑠𝑖𝑚)𝑇⏟    𝑘×2000 = �̂�U

𝑠𝑖𝑚⏟1×2000 
 

And, by definition �̂�F
𝑠𝑖𝑚⏟1×2000 = 𝟎⏟1×2000. A distribution of predicted probabilities given 𝒙 is given by: 

 𝐏(𝑦𝑖 = 𝑚|𝒙𝑖)⏟        1×2000 = exp(�̂�𝑚𝑠𝑖𝑚)∑ exp(�̂�𝑗𝑠𝑖𝑚)4𝑗=1  

A 95% confidence interval is obtained if we take the quantiles 0,025 and 0,975 of this vector of predicted 

probabilities. 

 

4 Event-study analysis  

We used an event study model to investigate how people from different socioeconomic groups changed 

their daily isolation levels after the implementation of state non-pharmaceutical intervention (NPI). The 

model was conducted using an ecological analysis where both socioeconomic characteristics of the 

population and daily isolation levels are spatially aggregated on the H3 hexagonal grid at resolution 8. 

Each cell has an edge of approximately 460 meters and an area of 0·74 km2. Hexagonal H3 cells were 

then ranked by income based on quintiles of average income per capita. Cells were also categorised as 

predominantly White when at least 60% of the population self-declared White and predominantly Black 

when at least 60% of the population self-declared Black or Pardo. 

 

The racial composition and income level of each cell were determined using dasymetric interpolation 

of the 2010 census tract data in two steps. First, data on income and race were passed to a finer regular 

grid of 200 meters and linked with population count by finding the aerial intersection and population 

size of each cell. This was reaggregated from the regular grid to the hexagonal grid. Hexagonal H3 cells 

were then ranked by income based on quintiles of average income per capita. Cells were categorised as 

predominantly Black when at least 60% of the population self-declared Black or Pardo, and likewise 

for White. 

 

In the event study model, our treated group is composed of hexagons predominantly of White 

population (race analysis) and the 20% wealthiest hexagons (income analysis). Conversely, the 

comparison groups were composed of hexagons with predominantly Black population and the 20% 

poorest hexagons. Our specification includes indicators for pre-and post-treatment effects, as follows: 
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𝑌𝑖𝑑 = [ ∑ 𝛽𝜏−2
𝜏=−12 𝐼(𝑡𝑖𝑑 − 𝑡∗ = 𝜏) +∑𝛽𝜏𝐼(𝑡𝑖𝑑 − 𝑡∗ = 𝜏)151

𝜏=0 ] + 𝑋′𝑖𝑑Θ + 𝜔𝑑 + 𝜇𝑖 + 𝜀𝑖𝑑  

 

 

where 𝑌𝑖𝑑 is the outcome (daily isolation level) observed for hexagon 𝑖 at day 𝑑; the indicator 𝐼(𝑡𝑖𝑑 − 𝑡∗ = 𝜏) measures the time (in days) relative to the day of the state NPI implementation on date 𝑡∗. We set the coefficient 𝛽−1 (March 12) equal to zero to use the day immediately prior to the state 

NPI implementation as the reference. 𝑋′𝑖𝑑  represents the set of hexagons covariates: a dummy variable 

indicating the beginning of NPI flexibilization period in each municipality, and a time-varying variable 

with the number of days relative to the first confirmed case of SARI in each hexagon (equates to 0 for 

days prior to the first case). 𝜇𝑖 is a hexagon fixed effect that controls non-parametrically for time-

invariant hexagon factors, such as hexagons' fixed geographical aspects (e.g., urban infrastructure, 

proximity to healthcare facilities, urban density etc), 𝜔𝑑 is a day fixed effect that controls non-

parametrically for aggregate shocks and other policies common to all hexagons at a specific moment in 

time, and 𝜀𝑖𝑑  is an idiosyncratic error term. All observations are weighted by the size of resident 

population in each hexagon 7. Finally, we clustered standard errors at the hexagon level to make 

estimations robust to serial correlation and heteroskedasticity 9. 

 

This method allows us to more formally test for pre-trends in outcome variables in the pre-period. The 

identifying assumption is that the time trend in the mobility level in treated areas would have a similar 

trend as the one observed in similar nontreated areas in the absence of the policy intervention. 

Coefficient estimates of 𝛽𝜏; with 𝜏 < 0 (representing the change, in percentage points, in the outcome 

each day pre-intervention) serves as a direct test of the plausibility of the identifying assumption. If 

hexagons have similar trends before the date of state declaration and diverge only after policy, it 

provides strong evidence that such changes were caused by the state NPI adoption rather than an 

unobservable factor. 

 

4.1 Summary statistics 

Table 1 presents summary statistics for the main variables used in our analysis. Columns (1)-(3) shows 

the number of observations, the mean and the standard deviation for the treated group, while columns 

(4)-(6) exhibit the same statistics for the comparison group. Panel A shows the summary statistics for 

the race estimation sample, while Panel B presents the summary statistics for the income estimation 

sample. 

 

Table A1 - Summary Statistics of hexagon characteristics 
 (1) (2) (3)  (4) (5) (6) 

  Panel A – Race sample estimation  

 Black  White 
 Obs. Mean Std. Dev  Obs. Mean Std. Dev 

Daily isolation level  16 187 0·418 0·084  225 231 0·457 0·100 

Days after first SARI case 16 187 45·47 45·23  225 231 59·16 47·14 

Days with NPI flexibilization 16 187 0·397 0·489  225 231 0·387 0·487 
  Panel B – Income sample estimation  

 Low Income  High Income 
 Obs. Mean Std. Dev  Obs. Mean Std. Dev 
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Daily isolation level  97 139 0·419 0·088  90 383 0·486 0·103 

Days after first SARI case 97 139 47·55 45·81  90 383 63·40 47·44 

Days with NPI flexibilization 97 139 0·396 0·489  90 383 0·381 0·486 
Notes. This table polls all days of data per group in each sample estimation (from March 1 to August 11). Data are at the 
hexagon-by-day level. 

 
 

4.2 Model sensitivity analysis 

 
We tested how the results of the event study by running the regression with and without covariates and 

testing for different number of days after the introduction of NPIs. Table A2 shows the results including 

only one treatment variable so it represents the effect of the average treatment every day. With 99% of 

statistical significance in all scenarios, the results indicate that the effect tends to increase up until the 

120th  day. The effects of NPI on isolation levels is consistently positive and significant in all estimates. 

The inclusion of covariates does not significantly change the coefficients nor the confidence intervals. 

 

Table A2 – Sensitivity analysis of NPI effects on isolation levels 

 

Number of 

days after NPI 

Analysis by income 

Without covariates With covariates 

Mean Min 95 Max 95 Mean Min 95 Max 95 

10 0·055*** 0·053 0·058 0·054*** 0·052 0·057 

30 0·084*** 0·082 0·088 0·081*** 0·079 0·085 

90 0·087*** 0·084 0·091 0·084*** 0·081 0·088 

120 0·083*** 0·080 0·087 0·082*** 0·079 0·086 

150 0·079*** 0·076 0·083 0·078*** 0·075 0·082 

              

Number of 

days after NPI 

Analysis by race 

Without covariates With covariates 

  Mean Min 95 Max 95 Mean Min 95 Max 95 

10 0·039*** 0·036 0·044 0·038*** 0·035 0·043 

30 0·064*** 0·060 0·069 0·061*** 0·057 0·066 

90 0·062*** 0·058 0·068 0·059*** 0·055 0·064 

120 0·059*** 0·055 0·064 0·056*** 0·053 0·061 

150 0·055*** 0·051 0·060 0·053*** 0·049 0·058 
Note. *** p <0·01 
 

5 Crosswalk: PNAD COVID-19 Occupations to ISCO-08 (1-digit) 

 

The crosswalk from PNAD COVID-19 occupational codes to ISCO-08 1-digit codes was done in two 

steps. First, we applied the conversion rule presented in Table A1 to the occupational codes of 

occupation categories in PNAD COVID-19 (variable C007C). Then we classified the values 2 and 3 of 

variable C007 as “Military” (once these occupations are not registered in C007). We further 
disaggregated Health Professionals and Technicians into separate occupational categories.  
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Table A2 – Crosswalk: Variable C007C to ISCO-08 1-digit groups 

PNAD-

COVID-19 

Occ. Code 

PNAD COVID-19 Occupations (English Label) 
ISCO-08 

(1-digit) 
ISCO-08 Label 

1 
Domestic worker, daily cleaner, cook (in private 

households), 
9 Elementary Occupations 

2 
Janitor, cleaning assistant, etc. (in public or private 

company), 
9 Elementary Occupations 

3 Office clerk 4 Clerical Support Workers 

4 Secretary, receptionist 4 Clerical Support Workers 

5 Telemarketing operator 4 Clerical Support Workers 

6 Merchant (owner of bars or shops etc.) 5 Services and Sales Workers 

7 Store salesperson 5 Services and Sales Workers 

8 Home seller, sales representative, catalog seller 5 Services and Sales Workers 

9 Street vendors 9 Elementary Occupations 

10 Cook and waiter (for restaurants, companies) 5 Services and Sales Workers 

11 Baker, butcher and confectioner 5 Services and Sales Workers 

12 Farmer, animal breeder, fisherman, forester and gardener 6 Skilled Agricultural, Forestry and Fishery Workers 

13 Agricultural labourers 9 Elementary Occupations 

14 Drivers (ride hailing apps, taxi, van, mototaxi, bus) 8 Plant and Machine Operators and Assemblers 

15 Truck driver 8 Plant and Machine Operators and Assemblers 

16 Courier services by motorcycle 9 Elementary Occupations 

17 
Delivery of goods (restaurant, pharmacy, store, Uber Eats, 

IFood, Rappy etc.) 
9 Elementary Occupations 

18 Bricklayer, stonemasons, painter, electrician, carpenter 7 Craft and Related Trades Workers 

19 Mechanic of vehicles, industrial machineries etc. 7 Craft and Related Trades Workers 

20 Craftsman, dressmaker and shoemaker 7 Craft and Related Trades Workers 

21 Hairdresser, manicure and other beauty occupations 5 Services and Sales Workers 

22 Machine operator, assembler in the industry 8 Plant and Machine Operators and Assemblers 

23 Production assistant, loading and unloading 8 Plant and Machine Operators and Assemblers 

24 
Teachers and professors (kindergarten, elementary, high 

school or higher education) 
2 Professionals 

25 Pedagogue, teacher of languages, music, art and tutoring 2 Professionals 

26 Health professionals 2 Professionals 

27 Health Technician 3 Technicians and Associate Professionals 

28 Babysitters and personal caretakers 5 Services and Sales Workers 

29 Security, vigilant, other guard security services 5 Services and Sales Workers 

30 Civil police 5 Services and Sales Workers 

31 Doorman or Porter 9 Elementary Occupations 

32 Artist, religious (priest, pastor, etc.) 2 Professionals 

33 Director, manager, political or commissioned position 1 Managers 

34 
Other higher-level profession (lawyer, engineer, 

accountant, journalist, etc.) 
2 Professionals 

35 Other mid-level technician or professional 3 Technicians and Associate Professionals 

36 Others 10 OTHER 

 

 

6 Classification of non-classified SARI cases as COVID-19 cases 

We considered all SARI cases with missing or unknown etiology as COVID-19 cases. This approach 

leads to an estimated number of COVID-19 cases that is closer to the actual number than taking into 

account only confirmed COVID-19 cases10. Figure A4 shows the number of daily SARI cases and 

deaths that were confirmed as COVID-19, confirmed by cause of a different etiology, or with unknown 

or missing etiology (non-classified SARI cases) for the state of São Paulo. In March 2020, both 

confirmed and non-classified SARI cases and deaths increased to a much higher level than what was 

previously recorded. This suggests that most non-classified SARI cases and deaths are actually caused 

by COVID-19, and that even severe COVID-19 cases suffer from undernotification in Brazil. 
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Figure A4. SARI cases and deaths in São Paulo that were confirmed by cause: COVID-19, other 

etiologies, and unknown etiology. 
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Appendix B: Figures  

 

 
Figure S 1. Individual level hospitalisation and death risk by age-standardised odds ratio (OR) after 

discarding data with missing race information. A, OR for SARI hospitalisation by race and B, OR for 

death among SARI patients by race.   
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Figure S 2. Prevalence of anti-SARS-CoV-2 IgG antibodies among blood donors in São Paulo, Brazil, 
according to self-reported race and education attainment. A and C, crude prevalence and B and D, 
prevalence corrected by age, sex, specificity and sensitivity are shown. Source: Covid-IgG study 11.  
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Figure S 3. A and C, Death probability and odds ratio of death by race in each hospital type using data 
without missing race information. B and D, with race imputed. Source: SIMI-SP.  
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Figure S 4. Probability of working condition by occupation type between May and September 2020 in 
São Paulo state. Source: PNAD COVID-19 (IBGE). 
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Figure S 5. Odds ratio of having been diagnosed with a comorbidity, by race and education attainment 
in São Paulo State, 2020. Source: PNAD COVID-19(IBGE). 
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Figure S 6. Proportion of population that reported of being tested for COVID-19 between July and 
September 2020 by A, education attainment and B, race in Brazil and São Paulo state. Source: PNAD 
COVID-19 (IBGE). 
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Figure S 7. Posterior probability of elevated relative risk at the municipality level for São Paulo state. 
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