








10 Arambepola R, et al. BMJ Global Health 2021;6:e007479. doi:10.1136/bmjgh-2021-007479

BMJ Global Health

to the lower levels of childhood vaccination in larger 
families found in some studies.19 21 37 38 The presence 
of another child in the household could affect vaccina-
tion status directly or this result may reflect correlations 
between household size and other socioeconomic factors 
that influence vaccination rates.

Recently the Gavi, global funding agencies, and some 
national vaccination programme managers have advo-
cated targeted and tailored measles and rubella vacci-
nation activities as opposed to non-selective, nationwide 
campaigns.39 To target intensified periodic routine 
immunisation activities, it is important to understand the 

Figure 4  Results from geostatistical models. (A) and (B) Predicted DTP and measles zero-dose prevalence before the 
mass vaccination campaign, respectively. (C) Predicted and observed DTP and measles zero-dose prevalence during cross-
validation at the settlement level. (D) Predicted effectiveness (overall increase in vaccination probability over all measles zero-
dose children) of adding an additional vaccination site in each location (shown in green with darker green representing greater 
effectiveness), with locations of measles zero-dose children shown by blue crosses, health facilities as red stars and current 
outreach sites as red crosses. DTP, diphtheria-tetanus-pertussis.

 on D
ecem

ber 8, 2023 by guest. P
rotected by copyright.

http://gh.bm
j.com

/
B

M
J G

lob H
ealth: first published as 10.1136/bm

jgh-2021-007479 on 30 D
ecem

ber 2021. D
ow

nloaded from
 



Arambepola R, et al. BMJ Global Health 2021;6:e007479. doi:10.1136/bmjgh-2021-007479 11

BMJ Global Health

spatial distribution of the zero-dose children or missed 
communities at a finer, subnational scale. Our analysis of 
the effectiveness of additional outreach vaccination sites 
shows how fine-scale spatial data can be used to answer 
operationally important questions and target allocation 
of vaccination resources to communities where there are 
likely to be more zero-dose children. Several areas were 
identified that had high numbers of measles zero-dose 
children and were relatively far from existing campaign 
sites. If outreach vaccination sites were set up in these 
areas, there is an increased likelihood that measles zero-
dose children would be reached, given the relation-
ship between travel time and vaccination. Moreover, by 
quantifying the effectiveness of the measles and rubella 
vaccination campaign in reaching measles zero-dose 
children, we were able to compare the relative impact of 
adding one or more vaccination sites in different loca-
tions. While real-world decision-making regarding plan-
ning and targeting of future campaigns will depend on 
many additional factors, analyses such as these could be 
a useful starting point for micro planning of routine and 
campaign-based vaccination activities.

Furthermore, geostatistical models of zero-dose prev-
alence, such as the ones developed here, could also be 
used for targeting of household vaccination activities. 
Our postcampaign household vaccination activities 
successfully vaccinated all but 14 of the measles zero-
dose children initially identified (nine were not reached 
during follow-up and five were not vaccinated despite 
being followed up), suggesting that household vaccina-
tion could be a highly effective tool for reducing zero-
dose prevalence in this area. However, the door-to-door 
activities carried out in this study before the campaign 
to identify zero-dose children were labour intensive and 
expensive. The use of predictive models could remove 
the need for this exhaustive household enumeration. 

Instead, limited household data collection in select areas 
could be performed to gather data to train a geostatistical 
model. Household vaccination activities could then be 
targeted to areas where predicted zero-dose prevalence is 
high. While more work is needed to validate the general-
isability and accuracy of these models, such a strategy has 
the potential to allow for precise targeting of resources to 
areas of most need in a cost-effective manner.

This work also has implications for the distribution of 
other vaccines through mass campaigns and for child 
health programmes more generally. Identifying and 
successfully providing healthcare to individuals with 
limited access to or interaction with routine health 
systems is vital for achieving consistently high coverage of 
public health interventions. These individuals or commu-
nities may be found in areas with high proportions of 
zero-dose children. Furthermore, other child survival 
interventions, including child health weeks, use much of 
the same infrastructure and healthcare providers as the 
mass measles and rubella vaccination campaign. There-
fore, zero-dose children who were not vaccinated during 
the campaign may also be missed by these interventions. 
Thus, our approach is applicable to other child health 
interventions and campaigns.

The household survey strategy described here provided 
a unique source of information on the fine-scale spatial 
variation in the prevalence of zero-dose children. The 
process of identifying structures via satellite imagery 
enabled data collectors to visit households that were not 
previously known to the survey team and ensured that 
remote locations were included. In contrast, routinely 
collected vaccination coverage data are collected at 
a more aggregated spatial scale, such as at the health 
facility or district-level and are therefore likely to mask 
some of the fine-scale variation. Furthermore, the collec-
tion of routine data is likely to be biased towards individ-
uals or communities with better access to the healthcare 
system and therefore may overestimate coverage. This 
can be seen in the high coverage values in many districts 
(often above 100%) where true coverage is believed to be 
much lower.24 40 Another common source of vaccination 
coverage data is from Demographic and Health Surveys 
(DHS)41; however, these data are unable to provide the 
same level of spatial granularity as the data analysed here 
due to privacy-preserving spatial displacement and less 
dense sampling schemes over much wider areas. In the 
2018 DHS in Zambia, for example, there were only four 
clusters in our study area and eight in Choma District.23

One limitation of this study is the limited demographic 
information collected. While the number of questions 
on the survey was intentionally limited to reduce the 
time taken to conduct each survey, more demographic 
information (such as indicators of socioeconomic status) 
would have allowed more factors potentially influencing 
vaccination status to be considered. This could have 
provided more insights into areas likely to have high 
numbers of zero-dose children in different districts or 
in the health facility catchment areas not included in 

Table 3  Mean and 95% credible interval for covariate 
effects in the model of probability of a measles zero-dose 
child being vaccinated during the mass measles and rubella 
vaccination campaign

Covariate Mean (CI)

Time to nearest campaign site −0.52 (−0.74 to 0.30)

Age −0.10 (−0.31 to 0.11)

Batoka 0.32 (−1.10 to 1.75)

Choma Railway Surgery −0.77 (−1.63 to 0.09)

Kamwanu −0.72 (−1.61 to 0.17)

Macha −1.05 (−1.87 to 0.23)

Mapanza −0.17 (−0.97 to 0.63)

Mangunza 1.02 (0.01 to 2.02)

Masuku Mission −0.10 (−0.99 to 0.79)

Mochipapa 1.58 (0.26 to 2.90)

Nalituba −0.72 (−1.95 to 0.52)

Shampande 0.61 (−0.21 to 1.42)
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the study. Similarly, conducting the survey in more than 
one district could have improved the generalisability of 
these findings and informed the reliability of some of 
the associations found. We performed several model vali-
dation steps and found that the model performed well 
during testing. However, the model may not perform 
as well in areas with substantially different geographic, 
and demographic characteristics than Choma District. 
Furthermore, we focused our analysis on children iden-
tified as DTP or measles zero-dose, defined as those that 
had not received DTP1 or MCV1, respectively. This did 
not include children who were partially immunised, that 
is, those who received MCV1 but not MCV2, who may 
represent another partially susceptible population. Addi-
tionally, data were not collected on DTP1 vaccination 
status for children 9 months and older, which would have 
allowed us to compare access to routine services more 
broadly. It could also have been useful to conduct more 
detailed interviews with caregivers or heads of households 
in which zero-dose children were identified regarding 
reasons for non-vaccination. Finally, our household data 
collection activities before the mass vaccination campaign 
may have influenced the coverage of the campaign, as the 
household data collection activities may have increased 
awareness in the community of the upcoming campaign. 
Any such effect would likely have increased vaccine 
uptake, however, strengthening the implications of our 
finding that a quarter of measles zero-dose children were 
not reached during the campaign. The data collection 
procedures for this study did not influence how the mass 
vaccination campaign was carried out, as the campaign 
was conducted following the traditional approach used 
by the health centres and did not use our data to make 
decisions on location of fixed and outreach posts.

CONCLUSION
We provide one of the first spatial analyses of the prev-
alence of zero-dose children and possible strategies to 
improve targeted and tailored measles and rubella vacci-
nation activities. Our analysis indicates that greater travel 
time to healthcare (either health facilities or vaccination 
sites) was associated with increased zero-dose prevalence 
and decreased likelihood of a measles zero-dose child 
being vaccinated in the mass vaccination campaign. The 
presence of other children in the household and living 
approximately equidistant from two health facilities were 
also associated with greater zero-dose prevalence. The 
fine-scale spatial variation in zero-dose prevalence high-
lights the potential benefits of subdistrict targeting and 
microplanning of vaccination activities and child health 
services more broadly.
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