SUPPLEMENTARY FILE

Madeleine C Clarkson, Ricardo Aguas, Kathryn Sweet, Tamalee Roberts, Michel Strobel, Paul N Newton. How many human pathogens are there in Laos? An estimate of national human pathogen diversity and analysis of historical trends

A. Additional Methods

1. Exclusion Criteria

Entries were excluded if: the disease or organisms was not specific to the species level; if the methodology used for the diagnosis was unclear and therefore could not be assigned an appropriate evidence grade; if the outcome of tests or examinations were unclear or returned a negative result; if the discovered organism was known not to be an agent of human infection or disease; if a symptom was described but could not be traced to a single causative organism (specifically referencing clinical diagnoses); if the organism could not be traced to current taxonomic practise or the causative agent could not be derived from the translation (unclear handwriting and or missing text). Reports of infectious diseases among emigrants, travellers and refugees were excluded as there is uncertainty whether the pathogen was contracted in Laos.

2. Notes on Lao Pathogen Line List Issues

Data line items were individually considered for eligibility on the basis of: likelihood of presence of pathogen, specificity of disease, pathogenic nature of organism (either identified as non-pathogenic or non-pathogenic to humans), taxonomic level available, a likely misspecification or contaminant, unknown sample specimen or a specimen collected outside of Lao PDR. The complied dataset was reviewed multiple times by MCC and PNN. Suspicious line items were followed up by a re-examining of the reference article and if need be further research or specialist consultation.

a. Unlikely Organisms

A line item that was excluded on the basis of likelihood was the *Leishmania* genus. The report came from the annual national RLG hospital report of 1966 (1). In the report numbers of "consult" referring to patients was listed as 644 and was attended by "consultations" amounting to 1,351. However, no other information is provided, and patients were not

1

admitted nor received any days of treatment. The laboratory report at the end of the document gave no confirmatory evidence.

Historically there have been investigations into the presence of *Leishmania* in Laos. A report from 1937 documented a negative report resulting from an investigation of spleen smears of dogs from Vientiane for the presence of *Leishmania* (2). In even earlier reports, "Kala azar" was mentioned in Rapport Medical Mensuel from 1923 and 1924 which indicate it was being at least looked for in what we presume is now the Microbiology Laboratory at Mahosot Hospital, but without any details of what laboratory tests were performed or clinical details it is impossible to confirm this diagnosis (3,4). A 2012 journal article (5) and searches of Pubmed and Google Scholar revealed no further evidence of *Leishmania* in Laos. With this uncertainty we decided not to record this disease as present in Laos, However, *Leishmania* is an emergent threat in this region with a growing number of case reports from its neighbour, Thailand, suggesting that future discoveries are likely (6).

The other line item excluded on this basis, was the Ross River virus. This appeared as a short paragraph in a French publication (7). There was insufficient information in the publication to source the original report. Subsequent searching of Pubmed and Google Scholar suggested that Ross River virus is not known to be in Lao or in any adjacent countries.

b. Unclear diagnosis

An unclear diagnosis was one where either the report was misleading or did not provide detail on the level of the diagnosis or for which no clear inference could be made, as per example, "1 cas de spirochetose pulmonaire gueri par une injection intramusculaire" appeared in a 1920 report but the specific causative agent is unclear (8).

c. Misidentification

The first reports of schistosomiasis in Lao were as early as 1935 (9). The species that was recorded was stated to be *Schistosoma mansoni*. Later reports identify the species as *Schistosoma japonicum*. It was only in 1973, in a paper by Snormani et al., that is was first described as a separate species of a "japonicum-like" appearance (10). The "japonicum-like" species was given the name *Schistosoma mekongi* in 1978. The identification of the species is recognized in these data as 1973, as "japonicum-like" implies a distinct and separate organism (11). *Schistosoma mekongi* is clinically similar to *Schistosoma mansoni* and

Schistosoma japonicum, suggesting that the records of these two *Schistosoma* species were a consequence of misidentification (12).

Isospora hominis and *Sarcocystis hominis* were recorded as separate organisms in a paper by Giboda et al. (13). *Isospora hominis* was subsequently identified as a separate stage of the organism *Sarcocystis hominis* (14). This implies that Giboda et al. double reported the same organism as separate pathogens, resulting from the previous misclassification.

d. Non-pathogenic in humans

For the purpose of this paper the Oxford English Dictionary definition of a pathogen was applied, which states (15): "A microorganism that can cause disease"

A combination of PubMED, Google Scholar and textbook searches were used to determine the pathogenic nature of organisms (16). Within the items not meeting the eligibility criterion of pathogenic organisms were: *Phthiriasis pubis* and *Pediculus humanus*. These organisms were excluded on the basis of not meeting the definition of being agents of disease. Pubic and head lice are associated with discomfort but we decided not to regarded as causing disease.

However, the anthropods *Sarcoptes scabiei*, *Chrysomya bezziana* and *Demodex* spp. all meet the disease eligibility criterion and are included in the analysis, because they are associated with subsequent pathology post-inoculation.

e. Unspecified organisms associated with a disease, syndrome or pathogen description

A number of the hospital reports and early documentation listed a disease, syndrome or pathogen description. For many diseases, syndromes and pathogen descriptions are sufficient to identify singular causative agent, such as is the case with measles that is caused solely by the measles virus. Two descriptions of herpes simplex virus (HSV) 1 and 2 were categorised by their clinical manifestation (HSV1 is an oral and HSV2 is a sexually associated infection (17)). However, a number of clinical and phenotypic descriptions are common to multiple organisms. The report of "hookworm" in the data, which can refer to multiple organisms, was a frequent example of this. Line items of this nature were excluded, as it was not specific enough to allow for inference as to the causative organism.

d. Probable contaminants

Probable contaminants were identified by the isolate sample and the clinical features by PNN.

e. Samples collected outside Laos

These reports were excluded during the selection of appropriate literature. as, inclusion of samples collected outside of Lao invites uncertainty into the likelihood of the pathogen being present in Lao. There is no way to be sure that the organisms identified were not acquired elsewhere. Temporary resettlement is identified as a contributing factor to communicable disease, making refugees more susceptible to diseases acquired as a result of the displacement (18).

f. Unknown samples

A number of reports cited organisms without the sample from which they were isolated. Often the isolates were recorded as being sampled from "Divers" which translates from French to English as "various". Without this information it is not possible to assign a grade for the strength of evidence. Since the strength of evidence was the basis of the analysis these organisms were excluded from the analysis.

References

- Royaume du Laos ministére de Santé publique. Rapport Statistique de L'assistance Médicale. Vientiane; 1966.
- Lefebvre. Recherches sur le Paludisme au Laos. Rev Med fracaise d'extreme orient. 1937;336–51.
- 3. Assitance medicale Indochine. Rapport Medical Mensuel de Juillet 1923. 1923.
- 4. Assitance medicale du Laos Indochine. Rapport annuel 1924. 1924.
- 5. Viroj W. Leishmaniasis in Southeast Asia: The story of the emergence of an imported infection in a non-endemic area of the world. J Univ Malaya Med Cent. 2012;15(1):1–4.
- Chusri S, Hortiwakul T, Silpapojakul K, Siriyasatien P. Case report: Consecutive cutaneous and visceral leishmaniasis manifestations involving a novel Leishmania species in two HIV patients in Thailand. Am J Trop Med Hyg. 2012;87(1):76–80.
- 7. Cattin O. LAOS : UN PAYS ENCLAVE. Med Trop. 2000;60:121–4.
- 8. Assitance medicale Indochine. Rapport Medical Mensuel d'ensemble 1920. 1920.
- 9. Annual Report of Assistance Medicale du Laos. Paris; 1935.
- 10. Sornmani S, Schneider C, Kitikoon V. Life Cycles of Schistosoma Japonicum-Like Trematode From Khong Isand Southern Laos. South East Asian J Trop Medicne Public. 1973;4(2):279-?
- Voge M, Bruckner D, Bruce JI, Voge, M., Bruckner, D., & Bruce J. Schistosoma mekongi sp. n. from Man and Animals, Compared with Four Geographic Strains of Schistosoma japonicum. J Parasitol [Internet]. 1978;64(4):577–84. Available from: http://www.jstor.org/stable/3279936

- 12. Ohmae H, Sinuon M, Kirinoki M, Matsumoto J, Chigusa Y, Socheat D, et al. Schistosomiasis mekongi: From discovery to control. Parasitol Int. 2004;53(2):135–42.
- GIBODA M, Viengsay M, Bouaphan S, Ditrich O. EPIDEMIOLOGIE DES PARASITOSES INTESTINALES AU LAOS. Bull Société Pathol Exot. 1991;84:184–93.
- 14. Palmer SR, Soulsby, Lord, Torgerson P, Brown DW. Oxford Textbook of Zoonoses: Biology, clinical practice, and public health control. second. Oxford: Oxford University Press; 2011.
- OED Online. "pathogen, n." [Internet]. Oxford University Press. 2016 [cited 2016 Aug 28]. Available from: http://www.oed.com/view/Entry/138792?redirectedFrom=pathogen%5D
- Mandell GL, Bennett JE, Dolin R. PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES. 7th ed. Philadelphia: Elsevier Ltd; 2010.
- Heymann DL. Control of Communicable Diseases Manual. 20th ed. Ross E, editor. Washington DC: Apha Press; 2015.
- Connolly M, Gayer M, Ryan M, Salama P, Spiegel P, Heymann D. Communicable diseases in complex emergencies: impact and chllenges. Lancet. 2004;364(9449):1975–83.

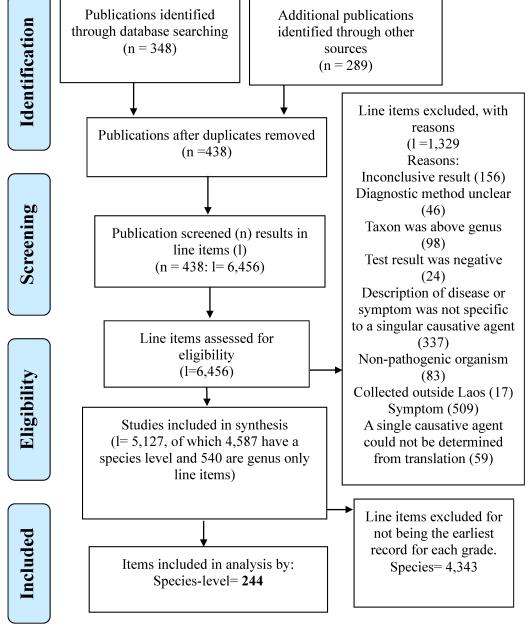


Figure 1: PRISMA diagram

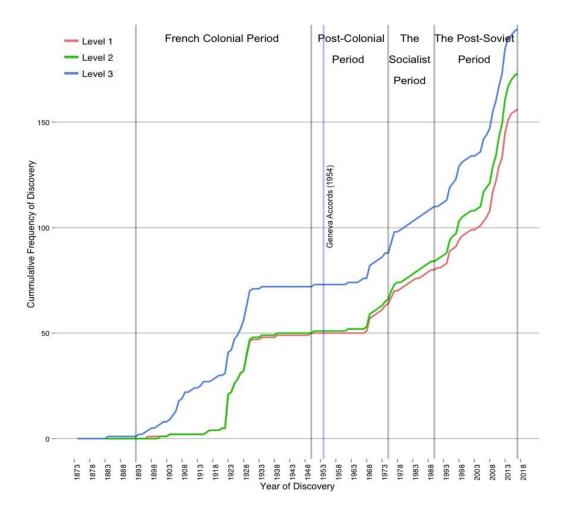
Grade of

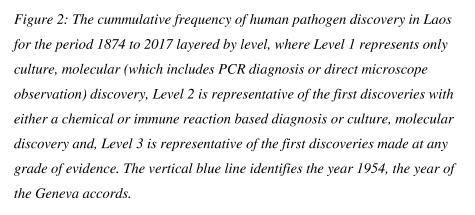
Year of discovery	Species name	strength of evidence used to make diagnosis		
2011	Acinetobacter baumannii	1		
2011	Actinomadura madurae	1		
1925	Actinomyces israelii	3		
1994	Aeromonas sobria	1		
1929	Alcaligenes faecalis	1		
2013	Alpha coronavirus (HCoV-229E)	1		
2013	Alpha coronavirus (HCoV-NL63)	1		
1989	Ancylostoma ceylanicum	1		
1923	Ancylostoma duodenale	1		
1971	Angiostrongylus cantonensis	1		
1909	Ascaris lumbricoides	3		
1923	Ascaris lumbricoides	1		
1900	Bacillus anthracis	3		
1929	Bacillus anthracis	1		
1929	Balantidium coli	1		
2009	Bartonella clarridgeiae	1		
2008	Bartonella henselae	2		
2013	Beta coronavirus (HCoVHKU1)	1		
2013	Beta coronavirus (HCoV-OC43)	1		
2012	Brucella abortus	2		
1999	Burkholderia pseudomallei	1		
1998	Campylobacter coli	1		
2007	Campylobacter fetus	1		
1998	Campylobacter jejuni	1		
1929	Candida albicans	1		
1997	Candida albicans	3		
1999	Capillaria philippinensis	1		
1970	Centrocestus formosanus	1		
1977	Chikungunya virus	1		
1994	Chikungunya virus	2		
1922	Chlamydia trachomatis	3		
2006	Chlamydia trachomatis	1		
2008	Chromobacterium violaceum	1		
1936	Chryseobacterium indologenes	1		
1928	Chrysomya bezziana	3		
1941	Chrysomya bezziana	1		
1923	Clonorchis sinensis	1		

Table 1 List of pathogens, the year of discovery in Laos and the grade of evidence.

1937	Clonorchis sinensis	3
2017	Clostridium difficile	1
1918	Clostridium tetani	3
2015	Clostridium tetani	2
1906	Corynebacterium diphtheriae	3
1931	Corynebacterium diphtheriae	1
2015	Corynebacterium diphtheriae	2
2010	Coxiella burnetti	2
2005	Cyclospora cayetanensis	1
2013	Cytoisospora belli	1
1911	Dengue virus	3
1992	Dengue virus	2
2010	Dengue virus	1
1929	Dicrocoelium dendriticum	1
2009	Diphyllobothrium latum	1
1974	Diphyllobothrium mansoni	1
1977	Dipylidium caninum	1
2005	Echinochasmus japonicus	1
1928	Echinococcus granulosus	3
1975	Echinococcus granulosus	1
2012	Echinostoma macrorchis	1
2012	Echinostoma malayanum	1
2012	Echinostoma revolutum	1
1914	Entamoeba histolytica	3
1923	Entamoeba histolytica	1
2011	Enterobacter aerogenes	1
1995	Enterobacter cloacae	1
1909	Enterobius vermicularis	3
1923	Enterobius vermicularis	1
2011	Enterococcus faecalis	1
2009	Enterovirus A	1
1966	Epstein-Barr virus	3
1914	Escherichia coli	3
1927	Escherichia coli	1
1977	Exophiala jeanselmei	3
1989	Fasciola gigantica	1
1930	Fasciola hepatica	1
1930	Fasciolopsis buski	1
1923	Fusobacterium necrophorum	1
1923	Giardia intestinalis	1
1974	Gnathostoma spinigerum	1
1926	Haemophilus aegyptus	1
1907	Haemophilus ducreyi	3

1923	Haemophilus ducreyi	1
1927	Haemophilus influenzae	1
1989	Haplorchis pumilio	1
1989	Haplorchis taichui	1
1989	Haplorchis yokogawai	1
2000	Helicobacter pylori	1
1998	Hepatitis A virus	2
1965	Hepatitis B virus	2
2008	Hepatitis B virus	1
1998	Hepatitis C virus	2
2008	Hepatitis C virus	1
1998	Hepatitis E virus	2
2010	Hepatitis E virus	1
1997	Herpes simplex virus 1	3
2008	Herpes simplex virus 2	3
1927	Human alphaherpesvirus 3	3
2013	Human bocavirus	1
1989	Human immunodeficiency virus (unspecified)	2
2010	Human Metapneumovirus	1
2012	human papillomavirus	1
1925	Human papillomavirus	3
2013	Human Respiratory Syncytial virus	1
2009	Hymenolepis diminuta	1
1991	Hymenolepis nana	1
1900	Influenza A virus	3
2007	Influenza A virus	1
2010	Influenza A virus	2
2007	Influenza B virus	1
2013	Influenza C virus	1
1977	Japanese encephalitis virus	1
1989	Japanese encephalitis virus	2
1992	Japanese encephalitis virus	3
1995	Klebsiella oxytoca	1
1930	Klebsiella pneumoniae	1
1997	Leptospira interrogans	2
2015	Leptospira interrogans	1
2011	Listeria monocytogenes	1
1929	Macracanthorhynchus hirudinaceus	1
1923	Malassezia furfur	1
1906	Measles virus	3
2011	Measles virus	2
1927	Moraxella lacunata	1
1959	Morganella morgani	1


1906	Mumps virus	3
2014	Mumps virus	1
2012	Mycobacterium bovis	2
1903	Mycobacterium leprae	3
1917	Mycobacterium leprae	1
1900	Mycobacterium tuberculosis	3
1920	Mycobacterium tuberculosis	1
1936	Mycobacterium tuberculosis	2
1924	Necator americanus	1
1900	Neisseria gonorrhoeae	3
1923	Neisseria gonorrhoeae	1
1926	Neisseria meningitidis	1
1926	Neisseria meningitidis	3
2006	Neorickettsia sennetsu	1
2015	Nocardia aobensis	1
1977	Nocardia brasiliensi	1
1930	Opisthorchis felineus	1
1968	Opisthorchis viverrini	1
1930	Orientia tsutsugamushi	3
1938	Orientia tsutsugamushi	2
2015	Orientia tsutsugamushi	1
2013	Paragonimus bangkokensis	1
1997	Paragonimus harinasutai	1
1969	Paragonimus heterotremus	1
2013	Paragonimus paishuihoensis	1
1969	Paragonimus westermani	1
2013	Parainfluenza virus 1	1
2010	Parainfluenza virus 3	1
2013	Parainfluenza virus 4	1
2005	Penicillium marneffei	1
2009	Phaneropsolus bonnei	1
1977	Phialophora pedrosoi	1
1925	Plasmodium falciparum	1
1925	Plasmodium malariae	1
1997	Plasmodium ovale	1
1923	Plasmodium vivax	1
1928	Poliovirus unspecified	3
1966	Poliovirus unspecified	1
1966	Poliovirus unspecified	2
2009	Prosthodendrium molenkampi	1
1995	Proteus mirabilis	1
1995	Proteus vulgaris	1
1931	Pseudomonas aeruginosa	1


1906	Rabies virus	3
1929	Rabies virus	1
1929	Rabies virus	2
2010	Respiratory Syncytial virus (RSVA)	1
2006	Rickettsia conorii	2
2006	Rickettsia felis	2
2009	Rickettsia felis	1
2006	Rickettsia helvetica	2
2016	Rickettsia japonica	2
1907	Rickettsia Prowazekii	3
2006	Rickettsia tamurae	2
2006	Rickettsia typhi	2
2015	Rickettsia typhi	1
1922	Roseolovirus	3
1907	Rubella virus	3
2011	Rubella virus	2
1909	Salmonella enterica	3
1925	Salmonella enterica	1
1929	Salmonella enterica	2
1989	Sarcocystis hominis	1
1904	Sarcoptes scabiei	1
1973	Schistosoma mekongi	1
1989	Schistosoma spindale	1
2011	Seoul virus	1
1977	Shigella boydii	1
1994	Shigella dysenteriae	1
1969	Shigella flexneri	1
1969	Shigella sonnei	1
1977	Sindbis Virus	1
2014	Spirometra erinaceieuropaei	1
2005	Sporothrix schenckii	1
1969	Staphylococcus aureus	1
1977	Staphylococcus aureus	3
1995	Staphylococcus epidermidis	1
1977	Staphylococcus epidermidis	3
1995	Staphylococcus saprophyticus	1
1989	Stellantchasmus falcatus	1
2011	Streptococcus agalactiae	1
1907	Streptococcus group A	3
2009	Streptococcus mutans	1
1923	Streptococcus pneumoniae	1
1929	Streptococcus pneumoniae	3
1915	Streptococcus pyogenes	3

1930	Streptococcus pyogenes	1
2014	Streptococcus suis	1
1923	Strongyloides stercoralis	1
2009	Taenia asiatica	1
2010	Taenia hydatigena	1
1923	Taenia saginata	1
1930	Taenia solium	1
1930	Toxocara canis	1
1989	Toxocara cati	1
2014	Toxocara vitulorum	1
1992	Toxoplasma gondii	2
1901	Treponema pallidum	1
1926	Treponema pallidum	2
1900	Treponema pallidum	3
1923	Treponema vincentii	1
1973	Trichinella spiralis	1
1969	Trichomonas vaginalis	1
1908	Trichophyton concentricum	3
1923	Trichophyton concentricum	1
1928	Trichophyton violaceum	1
1929	Trichostrongylus colubriformis	1
1922	Trichuris trichiura	1
1922	Trichuris trichiura	3
2014	Tropheryma whipplei	1
2014	Trypanosoma lewisi	1
1907	varicella-zoster virus	3
2015	varicella-zoster virus	2
1893	variola virus	3
1874	Vibrio cholerae	3
1925	Vibrio cholerae	1
1998	Vibrio parahaemolyticus	1
1979	Wuchereria bancrofti	1
1915	Yersinia pestis	3
1917	Yersinia pestis	1
2016	Zika virus	1

Domain	Bacteria	Viruses	Protozoa	Fungi	Arthropods	Helminths
Totals	101	58	14	10	3	58

Table 2. Total number of pathogens observed in Laos between 1974 and 2016 by taxa

13

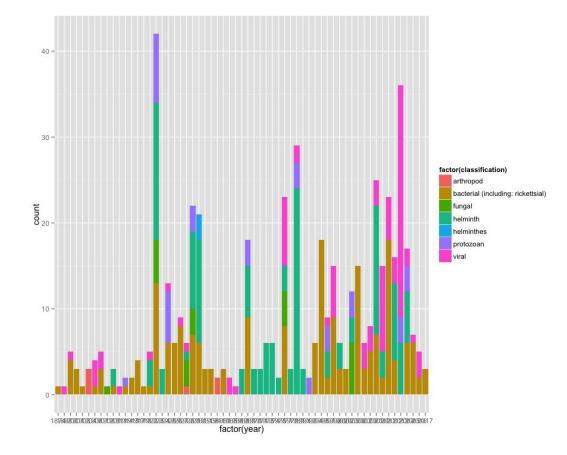
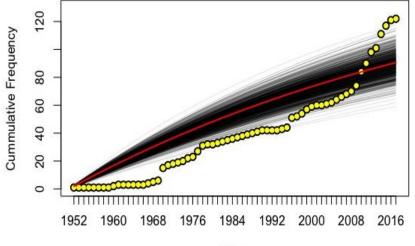



Figure 3 : Frequency of discoveries by year and classification

Time

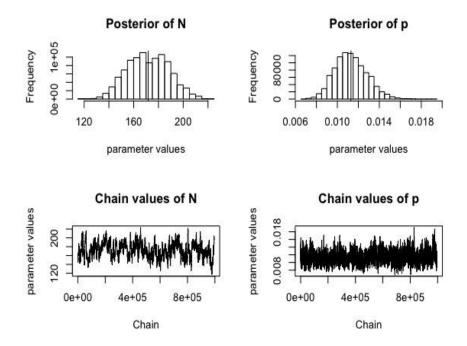


Figure 4: Discovery curve Model for level I data and MCMC output the yellow points represent the observed data, the red line is the best fitting model for a constant discovery rate and the black-lines represent the uncertainty in the model estimates. Underneath the model are a series of histograms which represent the posterior distributions of parameter estimates.

The chain output can be seen at the bottom of the figure and represent the range of parameter values tested and the number of iterations.