IDENTIFICATION OF AN MTB-SPECIFIC SOLUBLE HOST SIGNATURE FOR RISK OF DEVELOPMENT OF ACTIVE TB IN HIV-POSITIVE MTB-EXPOSED CONTACTS

1Joseph Mendy, 2Novel N Chegou, 3Harriet Mayanja-Kizza, 4Kim Stanley, 5Bonnie Thiel, 6Tom Ottenhoff, 7Stefan Kaufmann, 8Henry Boom, 9Gerhard Wald, 10Jayne Sutherland.

Background With 2 billion people infected with *Mycobacterium tuberculosis* (MtB) worldwide, identification of those most at-risk of progressing to active disease would provide a targeted, cost-effective approach for preventative therapy strategies. The GC6–74 project recruited MtB-exposed HIV-positive (HIV+) contacts from 5 African countries with the aim of identifying molecular and protein signatures for identification of ‘at-risk’ subjects by comparing those who progressed to active disease (progressors) to those who remained asymptomatic (controls).

Methods For this arm of the project, we analysed longitudinal samples from 12 HIV+ progressors and 28 HIV+ matched controls from Uganda (Makerere University, MAK) and South Africa (Stellenbosch University, SUN). Diluted whole blood was stimulated for 7 days with 7 MtB-specific antigens plus controls. Supernatant was collected and a 38-plex multiplex assay performed following identification of confirmed progressors and controls.

Results The median time to progression to active disease was 510 days for SUN and 425 days for MAK participants. Baseline CD4 counts were 163 cells/μl for progressors and 154 cells/μl for controls. Baseline responses showed significantly lower IL-4 production in progressors following ESAT-6/CFP-10 (EC) stimulation (p=0.0309) and significantly higher macrophage-derived chemokine (MDC) following both Rv3019 and TB10.4 stimulation. For the time-point closest to progression, IL-10 production following ESAT-6/CFP-10 stimulation was significantly higher in progressors than controls (p=0.0024 and p=0.0028 respectively). A combination of 12 analytes following EC and TB10.4 stimulation gave 84.4% and 91.1% correct classification respectively.

Conclusion We have defined a soluble signature for detecting likely progression to active TB in HIV+ subjects 1 year prior to progression. Following validation in other cohorts, this could be exploited for development of a field-friendly test for targeted interventional therapy.

A TRANSITIONAL PRECLINICAL PLATFORM TO ASSESS THE CHEMPROPHYLAXIS AND CHEMPREVENTION DOSE-RELATIONSHIP OF MALARIA DRUGS: THE CASE STUDY OF M5717

1Sofia Rebelo, 2Daniel Simão, 3Francesca Azev, 4Diana Fontinha, 5Marta Machado, 6Tatiana Martins, 7Christoph Froehli, 8Claude Dearsay, 9Manuel Caronho, 10Matthias Rotman, 11Thomas Spangenberg, 12Catarina Brito, 13Beatrice Greco, 14Miguel Prudencio, 15Paula M Alves, 16Catarina Brito, 17Stefan Kaufmann, 18Henry Boom, 19Jayne Sutherland, 20Novel N Chegou.

Background The spread of malaria through chemoprophylaxis is needed, including combination of drugs capable of blocking the spread of malaria through chemoprophylaxis.

M5717 is a first-in-class compound that targets the *Plasmodium* Eukaryotic translation Elongation Factor 2, essential for protein synthesis. M5717 is highly potent against all developing stages of *Plasmodium* parasites and has a long half-life suggesting that a single dose development may be possible for cure, prophylaxis and transmission blocking activities. *In vivo* preclinical PK/PD data indicates an increased exposure in the portal vein compared to peripheral circulation translating into a prophylactic activity at a lower dose than the curative one. M5717 is currently completing first-in-man studies with the objective of initiating clinical prophylactic development in 2019. Additional data to model the human prophylactic dose will be needed prior to initiate the studies to demonstrate clinical efficacy (phase 2).

We recently established a human cell-based platform for drug screening against *Plasmodium* liver-stage infection relying on human hepatic 3D cultures in bioreactors supporting rodent *P. berghei* infection with similar rates of infection and parasite development compared to existing models. The platform was validated by assessing the activity of currently used antimalarial drugs.

Here we report the data of a dose response experiment to establish the liver stage efficacious concentration of M5717 compared to atovaquone in *Plasmodium*-infected hepatic 3D cultures. The data obtained with this new model were confirmed using the *in vivo* model of *P. berghei* sporozoite-induced infection in mice, demonstrating the validity of the *Plasmodium*-infected hepatic 3D cultures as an enabling technology for malaria drug development. These data are also providing additional evidence that M5717 should be developed as a chemoprophylactic agent for the prevention of malaria.
Discussion Such scientific opinions on the quality, safety and efficacy of the medicines are provided by the EMA’s Committee for Medicinal Products for Human Use (CHMP). Prior to this, it is recommended to agree on the data to be generated through scientific advice. The opinions are based on the same standards as used for those approved for Europe, with considerations for local conditions of use. To promote reliance on EMA scientific outputs and awareness of the procedure, two training events with regulators from Southern and from Western Africa are organised in partnership with WHO, NEPAD and local regulators in June 2018.

Conclusion We have shown that this ‘article 58’ procedure has a true impact and we encourage applications by companies developing medicines, aimed to prevent or treat diseases of significant public health interest, to be marketed outside the EU. This will ensure timely access of medicines by patients in target countries all over the world.

OC 8432 EVALUATION OF AN ANTIBODY-DETECTING POINT-OF-CARE TEST FOR THE DIAGNOSIS OF *TAENIA SOLIUM* TERAENIASIS AND NEUROCYSTICEROSIS/CYSTICERCOSIS IN AN ENDEMIC AREA

1Chishimba Mubanga*, 1Kabemba Mwape, 1Gideon Zulu, 1Ch plains, 1Pierre Dorny, 2Sarah Gabriel, 2Inge Van Damme, 3Pierno Dorny, 4Sarah Gabriel, 4Inge Van Damme. 1University of Zambia, Lusaka, Zambia; 2Ministry of Health, Lusaka, Zambia; 3Institute of Tropical Medicine, Antwerp, Belgium; 4University of Ghent, Belgium

Background *Taenia solium* taeniasis/(neuro)cysticercosis is a neglected parasitic zoonosis with significant economic and public health impacts. Neurcysticercosis is responsible for 30% cases of acquired epilepsy in endemic areas. Diagnosis and case management of neurcysticercosis/taeniasis in resource-limited endemic countries is challenging. Reliable, inexpensive and easy to use diagnostic tools with sufficient sensitivity and specificity are currently not available. A new point-of-care (POC) test based on recombinant rT24H and rES33 proteins developed by the Centre for Disease Control in Atlanta (US) which combines diagnosis of taeniasis and cysticercosis has been developed, however, its performance at community level is not known. The aim of this study is therefore, to evaluate the diagnostic performance of this test in a community setting.

Methods The study site is Mtandaza community, Sinda district, Eastern Province of Zambia. The diagnostic accuracy is being evaluated for taeniasis and (neuro)cysticercosis in 1200 randomly selected participants in a community-based study. The performance characteristics (sensitivity and specificity) for neurcysticercosis will be computed by cross-tabulating of POC results with those of the MBT device. Quantitative signals are recorded with a low-cost handheld reader compatible with the applied luminescent up-converting particle (UCP) label. Biomarker selection and algorithms used to distinguish potential-TB and ORD are flexible. Results Results obtained with MBT strips containing multiple test lines correlate well with singleplex LF strips. Using LF tests for 5 selected biomarkers a sensitivity of 94% and specificity of 96% could be achieved with a confirmed South African sample of 20 TB and 31 non-TB patients. Patients were designated TB positive when scoring a value above the cut-off threshold for at least 3 out of 5 biomarkers. Serum samples of potential TB patients collected at five medical research institutes (Ethiopia, Namibia, South Africa, The Gambia, Uganda) were tested locally with MBT strips comprised of CRP, SAA, IP-10, Ferritin, ApoA-I and IL-6 and results analysed to obtain an overall pan-Africa applicable signature.

Conclusion Evaluated POC applicable UCP-LF devices detecting serum biomarker signatures can help to distinguish active TB from other respiratory diseases and as such can prioritise highest-risk patients for further care. Ongoing prospective studies evaluate the MBT strip with fingerstick blood and do not require a laboratory or trained phlebotomist anymore.

OC 8435 MULTI-BIOMARKER TEST STRIP FOR POINT-OF-CARE SCREENING FOR ACTIVE TUBERCULOSIS: A FIVE-COUNTRY MULTI-CENTRE TEST EVALUATION

1Paul Cortijos*, 1Amouk Van Hooi, 1Elsa Tijn Kon Fat, 1Shannon Herdigein, 2Anna Ritah Namuganya, 2Azania Diergaardt, 4Hygimutsatubatendo, 2Awa Gindeh, 4Adane Mithee, 4Gian Van De Spuy, 4Ganur Gunther, 4Rawlewe Howie, 4Harriet Mayanja-Kizza, 4Jayne Sutherland, 4Novel N Chegou, 5Tom Ottenhoff, 5Gerhard Walzl, 5Annemieke Geluk. 1Leiden University Medical Center, The Netherlands; 2Stellenbosch University, South Africa; 3Medical Research Council, Serckshunda, The Gambia; 4Armour Hansen Research Institute, Addis Ababa, Ethiopia; 5Makere University School of Medicine, Kampala, Uganda; 6University of Namibia School of Medicine, Windhoek, Namibia

Background Inexpensive rapid screening tests that can be used at the point-of-care (POC) are vital to combat tuberculosis. Particularly, less invasive non-sputum-based biomarker tests for all TB forms can help controlling transmission. Availability of such tests would significantly accelerate and streamline diagnostic approaches, improve cost-efficiency and decrease unnecessary costly GeneXpert referrals.

Methods Multi-biocomarker test (MBT) devices measuring levels of selections of up to six serum proteins simultaneously on a single lateral flow (LF) strip were produced. The strip contains individual capture lines for a biomarker selection allowing discrimination of TB-patients from other respiratory diseases (ORD). Only biomarkers successfully evaluated with singleplex strips (single biomarker tests) were applied to the MBT device. Quantitative signals are recorded with a low-cost handheld reader compatible with the applied luminescent up-converting particle (UCP) label. Biomarker selection and algorithms used to distinguish potential-TB and ORD are flexible. Results Results obtained with MBT strips containing multiple test lines correlate well with singleplex LF strips. Using LF tests for 5 selected biomarkers a sensitivity of 94% and specificity of 96% could be achieved with a confirmed South African sample of 20 TB and 31 non-TB samples. Patients were designated TB positive when scoring a value above the cut-off threshold for at least 3 out of 5 biomarkers. Serum samples of potential TB patients collected at five medical research institutes (Ethiopia, Namibia, South Africa, The Gambia, Uganda) were tested locally with MBT strips comprised of CRP, SAA, IP-10, Ferritin, ApoA-I and IL-6 and results analysed to obtain an overall pan-Africa applicable signature.

Conclusion Evaluated POC applicable UCP-LF devices detecting serum biomarker signatures can help to distinguish active TB from other respiratory diseases and as such can prioritise highest-risk patients for further care. Ongoing prospective studies evaluate the MBT strip with fingerstick blood and do not require a laboratory or trained phlebotomist anymore.

OC 8450 ABSENCE OF MINORITY HIV-1 DRUG-RESISTANT VARIANTS FOLLOWING MOTHER-TO-CHILD TRANSMISSION DOES NOT PREDICT VIROLOGIC SUCCESS OF FIRST-LINE ANTIRETROVIRAL THERAPY

1Cosy Kiyon*, 2Tobias Rikke De Wit, 1Immaculat Nankya, 2Sheilla Balinda, 2Kim Sigaloff, 1Emmanuel Ndashimye, 2Peter Mugyenyi, 3Adane Mihret, 2Gian Van De Spuy, 2Gunter Gunther, 1Paul Corstjens, 1Anouk Van Hooi, 1Elisa Tijn Kon Fat, 1Shannon Herdigein, 2Anna Ritah Namuganya, 2Azania Diergaardt, 4Hygimutsatubatendo, 4Adane Mithee, 4Gian Van De Spuy, 4Ganur Gunther, 4Rawlewe Howie, 4Harriet Mayanja-Kizza, 4Jayne Sutherland, 4Novel N Chegou, 5Tom Ottenhoff, 5Gerhard Walzl, 5Annemieke Geluk. 1Leiden University Medical Center, The Netherlands; 2Stellenbosch University, South Africa; 3Medical Research Council, Serckshunda, The Gambia; 4Armour Hansen Research Institute, Addis Ababa, Ethiopia; 5Makere University School of Medicine, Kampala, Uganda; 6University of Namibia School of Medicine, Windhoek, Namibia

Background However, its performance at community level is not known.

Methods The aim of this study is therefore, to evaluate the diagnostic performance of this test in a community setting.

Results Preliminary results of 505 POC tests so far conducted show that 0.8% were positive for taeniasis, 9.1% for cysticercosis and, 4.6% were invalid or unclear. Except for Copro-Ag and B158/B60 Ag-ELISA for taeniasis and cysticercosis respectively, reference tests are yet to be conducted.

Conclusion Results will show the diagnostic value of the POC test and its applicability for use at community level in endemic areas. If successful, implementation of the tool will enable early detection of taeniasis and suspected neurcysticercosis cases and lead to improved patient management and treatment outcomes.