Background

Triple class drug-resistant HIV-1 infection remains a global challenge in individuals with extensive antiretroviral treatment (ART) experience, in terms of high mortality and probability of onward transmission. New therapeutic options within old and new drug classes are therefore essential. We determined if patients failing salvage therapy in Botswana are eligible for maraviroc (MVC) and enfuvirtide (T20) viral entry inhibitors based on the coreceptor usage and drug-resistant mutations in envelope gp120 and gp41.

Methods

A total of 38 deep salvage patients were included in the analysis. We amplified and sequenced gp41 and V3 regions of HIV-1 envelope. Drug resistance mutations were analysed according to the IAS-USA 2017 reference mutation lists. Coreceptor usage was determined using PSSM and Geno2Pheno using a false-positive rate (FPR) of 10%.

Results

Among 38 participants, 34 (89%) were successfully sequenced and amplified gp41 and 26 (68%) gp120 V3 loop sequences were obtained. Major T20 mutation G36S was obtained in 1/34 samples (5.8%) within the study population. Polymorphisms I169V(97%), I135L(100%), E151A(70.6%) and N42S(70.6%) were detected in HR1 and HR2 of gp41.CXCR4 coreceptor associated mutation, L34M in gp41 HR1 was detected in 2 samples (5%). Analysis of coreceptor usage showed (17/26) 65.4% use of CCR5, and a (9/26) 34.6% use of the CXCR4 coreceptor.

Conclusion

A moderately high proportion of treatment-experienced (deep salvage) participants had CXCR4 coreceptor usage strains. The use of maraviroc in Botswana would require coreceptor tropism testing. Non-T20 treatment experience in Botswana reduces the prevalence of the major mutations that confer resistance to the drug. T20 is therefore a potential alternative drug for patients failing salvage therapy in Botswana.

Background

With the endemic *Mycobacterium africanum* (Maf), West African laboratories use glycerol and pyruvate in separate LJ cultures (LJG and LJP) for isolation of MTBC. The aim of this work is to evaluate if combining both glycerol and pyruvate in a single LJ medium (LJGP) will lead to comparable growth characteristics and time to detection in comparison to LJG, LJP and MGIT 960.

Method

Total of 118 smear-positive sputum samples were processed using 4% NaOH-NALC decontamination method. The decontaminated samples were inoculated parallel on LJG, LJP, MGIT 960 and LJGP. Positive cultures were confirmed using Ziehl-Neelsen staining method. MTBC identification was done using the Capilia TBNeo kit and spoligotyping used for speciation.

Results

The recovery rate for LJG, LJJP and MGIT was found to be 73.7% (87/118), 82.2% (96/118), 83.9% (99/118) and 93.2% (110/118) respectively. No significant agreement was observed between the LJGP and MGIT 960 with Kappa values of −0.105 (p-value=0.199). However, there was significant agreement between LJGP and LJG with Kappa value of 0.736 (p-value<0.001) and 0.756 (p-value<0.001), respectively. There were 70 Euro-American, 34 Maf, 9 East-Asian, 2 Indo-Oceanic, 2 East-African-Indian and 1 *M. bovis*. LJG GP have better Maf recovery rate, 85.3% (29/34) in comparison to MGIT 960, 79.4% (27/34), LJP 76.5% (26/34) and LJG, 61.8% (21/34). Seven of the 8 MGIT negatives that were LJGP positive were *M. africanum* and 1 *M. bovis*.

Conclusion

LJGP has a better detection rate and time to positivity compared to LJG and LJP and was shown to have a better Maf recovery rate than other LJ methods and MGIT 960. It is evident that LJGP is a promising culture tool for Maf-endemic West African countries that will not only increase MTBC recovery rate in combination with MGIT, but also leads to better detection of Maf.