discomfort, as well as the regular and permanent follow-up of the patient until recovery of his health. Blood sampling for laboratory examinations was highly appreciated and mentioned by our respondents as the main indicator of the quality of care provided by the research teams.

Conclusion The quality of care according to the criteria the participants and the health workers assigned to it, is intrinsically linked to clinical trials.

PO 8269 **SELECTION OF SEVEN-MUTATION PFCRTPFMDR1 GENOTYPE AFTER SCALING-UP SEASONAL MALARIA CHEMOPREVENTION WITH SULPHADOXINE-PYRIMETHAMINE AND AMODIAQUINE IN MALI**

1Hamma Maiga*, 2Amadou Bamadio, 3Alou Traore, 3Nouhoum Diallo, 3Modibo Diarra, 1Issaka Sagara, 1Hamidou Niangaly, 2Boubou Sangare, 2Ogobara K Doumbo, 2Michel Vaillant, 2Alassane Dicko, 2Ogobara K Doumbo, 3Abdoulaye Djambo. National Institute of Public Health Research, Bamako, Mali; 2Malaria Research and Training Center, University of Bamako, Mali; 3Luxembourg Institute of Health

10.1136/bmjgh-2019-EDC.63

Background WHO recommended seasonal malaria chemoprevention (SMC) in 2012 for Sahel countries in Africa with the aim to reduce malaria among children under 5 years old by using sulphadoxine-pyrimethamine and amodiaquine (SP+AQ). This strategy was scaled up in Mali from 2012. The use of millions of doses of SP+AQ could generate potential Plasmodium falciparum resistance in mutant parasites. The aim of this study was to monitor the prevalence of Pfhrp2 -pfcrt -pfmdr1 mutations in parasites infecting the target population.

Methods Two cross-sectional surveys were conducted before (August 2012, n=662) and after (June 2014, n=670) a pilot intervention of SMC in 2012 for Sahel countries in Africa with the aim to reduce malaria among children under 5 years old by using sulphadoxine-pyrimethamine and amodiaquine (SP+AQ). This strategy was scaled up in Mali from 2012. The use of millions of doses of SP+AQ could generate potential Plasmodium falciparum resistance in mutant parasites. The aim of this study was to monitor the prevalence of Pfhrp2 -pfcrt -pfmdr1 mutations in parasites infecting the target population.

Results In the SMC population 191 and 85 children before and after SMC implementation, from 0.0% to 7.1% (\(p=0.0008 \)) the seven-mutation Pfcrt -Pfdhfr-dhps codons 51, 59, 108 and 164; Pfdhps codons 437 and 540, Pfcrt codon 76 and Pfmdr1 codon 86 were analysed by PCR on DNA of parasites from SMC population blood samples (after and before) and non-SMC patients aged 7 years or above (November 2014, n=500).

Conclusion SMC increased the prevalence of the six-mutation Pfcrt genotype of P. falciparum that can lead to resistance in a population exposed to SMC with SP+AQ.

PO 8271 **PFHRP2 GENE DELETIONS IN PLASMODIUM FALCIPARUM AND SCHISTOSOMA MANSONI CO-INFECTIONS: AN EMERGING CHALLENGE FOR MALARIA RAPID DIAGNOSTIC TESTS**

1Hilda Echelibe, 1Masumbe Netongo Palmer, 2Nji Akindeh, 1Wilfred Mbacham. 1Department of Microbiology/Immunology, School of Health Sciences, Catholic University of Central Africa, Yaounde, Cameroon; 2Biotechnology Center/FMBS, University of Yaounde I, Cameroon; 3Department of Physiological and Biochemical Sciences, University of Yaounde I, Cameroon

10.1136/bmjgh-2019-EDC.64

Background Malaria and schistosomiasis are infections that have a great impact in sub-Saharan Africa based on their high morbidity and mortality rates. We suggest the possibility that the microenvironment created from interactions between the parasites involved generates a pressure on the malaria parasite which could in turn favour the parasite’s adaptation or escape through Pfhrp2 gene deletions. Thus, this study aimed at determining the association between the co-infection with both parasites and false-negative PfHRP2-based malaria rapid diagnostic tests which occur because of these deletions.

Methods This pilot study was conducted in a total of 149 children aged 7–17 years living in Yorro, located in the Mbam-Inoubou division of the Center region of Cameroon. We collected fresh stool samples from each participant to identify Schistosoma mansoni (Sm) eggs by Kato Katz method and blood samples to identify the ring stages of Plasmodium falciparum (Pf) by thick smear. Malaria rapid diagnostic test and Pfhrp2 gene polymerase chain reaction were performed. The association between the co-infection with Sm/Pf and the false-negative malaria RDTs was determined by the Fisher’s exact test. A p value<0.05 was considered statistically significant.

Results Our results showed that samples were singly infected with Sm, Pf, co-infected (Sm/Pf) and negative for both infections at frequencies of 12%, 43%, 30.2% and 14.8% respectively. False-negative PfHRP2-based RDTs were observed in 4.7% of the participants. A higher frequency (5/7) of the cases with false-negative malaria RDTs were co-infected with Sm/Pf. A p value of 0.027 showed statistical significance in the association of Sm/Pf co-infection and false-negative PfHRP2-based RDTs.

Conclusion A significant association of Plasmodium falciparum and Schistosoma mansoni co-infection with false-negative PfHRP2-based RDTs supports the case for a plausible implication of Pfhrp2 gene deletions, with consequences for malaria rapid diagnostic testing.

PO 8275 **HEPATITIS B VIRUS IMMUNE ESCAPE MUTANTS AMONG APPARENTLY HEALTHY INHABITANTS IN IBADAN, SOUTHWESTERN NIGERIA**

1Adelaye S Bakare*, 1Ijeoma M Ifearah, 1Adegboyega Akere. 1College of Medicine, University of Ibadan, Nigeria; 2University of Nigeria,Nsukka, Nigeria

10.1136/bmjgh-2019-EDC.65

Background The documentation of circulation of immune escape mutants (IEMs) poses a risk on the continual success of HBV prevention and control. Therefore, this study aimed to determine the possible circulation of IEM among asymptomatic dwellers in southwestern Nigeria.