ABSTRACTS OF ORAL PRESENTATIONS

[Abstract content not provided]

OC 8173 RAPID DETECTION OF MYCOBACTERIUM ULCERANS BY RECOMBINASE POLYMERASE AMPLIFICATION

1Michael Frimpong*, 1Hubert Ahor, 1Francisca Sarpong, 1Keni Laing, 1Mark Wansbrough-Jones, 1Richard Phillips. *Kumasi Centre for Collaborative Research in Tropical Medicine, Kumz, Ghana; 2St. George’s University of London, London, UK

10.1136/bmjgh-2019-EDC.2

Background There are no primary measures to prevent people from contracting Buruli ulcer, mainly due to poor understanding of its epidemiology. The current control strategy emphasises early diagnosis and prompt treatment, with the goal of avoiding the complications associated with advanced stages of the disease. There is no diagnostic test for the disease appropriate for use at the primary health care level where most cases are detected and treated. Diagnosis based on clinical signs is unreliable in inexperienced hands and complicated by infections that have similar presentations. This study was to develop and evaluate the use of recombinase polymerase amplification (RPA) assay for the detection of Mycobacterium ulcerans at the point of patient care.

Methods A specific fragment of IS2404 of M. ulcerans was amplified in 15 min at a constant temperature of 42°C, using the RPA assay and analysed on a portable fluorometer. The method was tested for sensitivity and specificity with molecular standard of IS2404 DNA fragment, various M. ulcerans strains, other mycobacteria and environmentally associated bacteria. Additionally, the assay performance as a diagnostic tool was tested with archived DNA from symptomatic patients. All results were compared with that of a highly sensitive IS2404 PCR.

Results The detection limit was 50 copies of IS2404 in 15 min using plasmid standard and 125 fg with genomic Mt DNA equivalent 25 genomic copies. The assay was highly specific in detecting all strains of M. ulcerans with no observed cross reactivity with other mycobacteria and common skin colonising bacteria. The clinical sensitivity and specificity of the BU-RPA assay using clinical samples was 86% and 100% respectively.

Conclusion We have developed a real-time isothermal RPA assay for the detection of M. ulcerans as a cheaper alternative to PCR. Combining this assay with a simple extraction protocol will maximise its use as point-of-care test for Buruli ulcer.

OC 8244 QUANTITATIVE LATERAL FLOW ASSAY FOR DETECTION OF M. LEPRAE INFECTION USING FINGERSTICK BLOOD

1Annemieke Geluk*, 1Anouk Van Hooij, 1Elisa Tjon El Fat, 1Kosshed Alam, 1Sipho Dlamin, 1Moises Batista Da Silva, 1John Spencer, 1Culdioa SGalogo, 1Tan Hendrik Richardus, 1Paul Creijuels. *Leiden University Medical Center, The Netherlands; The Leprosy Mission of the Netherlands, The Netherlands; The Leprosy Mission Rural Health programme, Daka, Bangladesh; Universidade Federal do Para, Brazil; Grootte Schuur Hospital, Cape Town, South Africa; Colorado State University, USA; Erasmus MC, University Medical Center, Rotterdam, The Netherlands

10.1136/bmjgh-2019-EDC.4

Background Leprosy is a debilitating, infectious disease caused by Mycobacterium leprae leading to skin and nerve damage and often lifelong handicaps. The unabated rate of new leprosy case detection indicates that transmission of M. leprae is persistent and that current measures for prevention and multi-drug therapy (MDT) are insufficient. Contact with M. leprae-infected individuals is a risk factor for development of leprosy. Thus, detection of M. leprae-infected individuals without clinical symptoms, allowing informed decision making on who needs treatment at a preclinical stage, is vital to interrupt transmission and can help prevent leprosy.

Immunophylaxis by vaccination or post-exposure prophylaxis (PEP) with antibiotics provide effective strategies for the prevention of leprosy. To target individuals unknowingly spreading leprosy bacilli, methods allowing objective measurement of M. leprae infection are needed. Besides antibody (Ab) levels that correspond with bacterial load and higher risk of progression to leprosy, detection of cytokine profiles can provide significant added value to identify infection.

Methods Quantitative detection of anti-PGL-I IgM antibodies, and cytokines such as IP-10 was performed on lateral flow (LF) test strips utilising the luminescent up-converting particle (UCP) technology. Precise amounts of fingerstick (FS)-blood samples were collected using disposable heparinised capillaries.

OC 8215 DIAGNOSTIC ACCURACY OF XPERT MTB/RIF ULTRA FOR PULMONARY TUBERCULOSIS IN CHILDREN: A MULTICENTRE COMPARATIVE STUDY

1Issa Sabi, 2Andrea Racow, 1Daniel Mapamba, 1Peta Cloveres, 1Nyanda E Ntinginya, 4Mohamed Saramako, 4Lukjko Karmwell, 3Michael Haarako, 2Michael Hoelischer, 5Daniel Paris, 5Elmar Saathoff, 5Klaus Kethier*, 1NH-Mbaya Medical Research Center, Tanzania; 2Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich, Germany; 3German Centre for Infection Research (DZIF), Partner Site Munich, Germany; 4Rakura Health Institute, Tanzania; 5Swiss Tropical and Public Health Institute, Swiss; 6University of Basel, Switzerland

10.1136/bmjgh-2019-EDC.3

Background Xpert® MTR/ RIF (Xpert) has suboptimal sensitivity for the diagnosis of pulmonary tuberculosis in children. The next-generation Xpert MTR/RIF Ultra assay (Xpert Ultra) is substantially more sensitive than Xpert and may allow improved detection of paediatric tuberculosis. We evaluated the diagnostic accuracy of Xpert Ultra versus Xpert in the detection of pulmonary tuberculosis in children.

Methods From May 2011 to September 2012, children with presumptive pulmonary tuberculosis were enrolled at two Tanzanian research sites in the EDCTP-funded TB CHILD project. Sputum samples were collected and examined for tuberculosis using sputum smear, Xpert and culture. Xpert Ultra analysis was performed between January and June 2017 at both sites using decontaminated sputum pellets which had been stored at −80°C. The diagnostic accuracy of Xpert and Xpert Ultra was determined using well-defined case definitions as reference standard.

Results In total, 215 children were included in the analysis. The median age was 5.4 years (IQR, 1.5 to 9.9), the HIV prevalence was 52%, and 28 children (13%) had culture-confirmed pulmonary tuberculosis. When only the first available sample of each patient was considered, the sensitivity of Xpert Ultra was 64.3% (95% CI: 44.1 to 81.4) while that of Xpert was 53.6% (95% CI: 33.9 to 72.5). The specificity of Xpert Ultra based on the analysis of all available samples was 98.1% (95% CI: 93.4 to 99.7), whereas that of Xpert was 100%.

Conclusion In settings with a high burden of tuberculosis and HIV, Xpert Ultra had a better sensitivity than Xpert in children. However, the specificity was slightly lower than that of Xpert. Thus, Xpert Ultra has the potential to increase the reliability and the speed of tuberculosis diagnosis in children.