Introduction
More than 4500 sites globally have analysed samples for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater since the start of the coronavirus disease 2019 (COVID-19) pandemic,1 thereby providing data that complement clinical data relevant to the pandemic. Laboratory standards for SARS-CoV-2 wastewater surveillance have largely focused on sewered systems with supporting PCR-based analyses.2 Additional surveillance efforts are increasingly moving beyond SARS-CoV-2 to other public health diseases of concern, such as influenza and polio, which can also be detected in wastewater.3 4 Long-term and ongoing WHO environmental surveillance efforts for poliovirus were established before the recent pandemic5; in this respect, detection is not necessarily a target for expansion, but rather provides a model for replication. The existing literature has identified key factors and practical solutions for setting up and operating clinical laboratories in resource-limited settings,6 7 and other studies on higher education have focused on strengthening the sanitation and hygiene research workforce in such settings.8 Wastewater surveillance systems may include numerous households in an area by sampling a sewer connection, but surveillance may also include non-sewered sanitation sampling through individual or community-based household pit latrines or septic tanks or environmental samples where human waste is also known to occur.9 10 In resource-limited settings, there is a need for strategies and systems ensuring the robust monitoring of sanitation systems, including the role of laboratories. Wastewater or environmental (including non-sewered sanitation) based surveillance, where appropriate, based laboratory and epidemiological considerations in resource-limited settings can focus on pathogen detection and pandemic prevention; however, transparent discussions on the challenges and adaptations needed in operationalisation can help meet the needs of future health research surveillance.
We adapted an existing public higher education academic laboratory for wastewater or environmental public health analyses focused on pathogen detection in Malawi. Laboratory construction, infrastructure improvements and retrofitting were avoided. Pathogens were agreed on during consultation with various national environmental health sector stakeholders, including the Ministry of Health and the United Nations Children’s Fund. Pilot samples and analyses were introduced weekly in 2022 for culture-based methods used to monitor Vibrio cholerae and Salmonella typhi, followed by confirmation analyses of isolates using PCR-based methods and SARS-CoV-2 was also analysed using PCR. We were unable to perform measles or tuberculosis analyses. The three sampling locations, all of which were close to the laboratory, included: a large government healthcare facility, a small private healthcare facility and the higher education campus where the laboratory was located. This report aims to describe the challenges encountered over a 6-month period of setting up a wastewater or environmental public health laboratory for multipathogen surveillance in a resource-limited setting. Furthermore, this article contributes to the ongoing discussion on the African perspective for future public health wastewater surveillance10 11 and how to ensure more timely and higher quality epidemiological data.