Article Text

Download PDFPDF

The quality of veterinary medicines and their implications for One Health
  1. Vayouly Vidhamaly1,2,3,
  2. Konnie Bellingham1,2,3,
  3. Paul N Newton1,2,3,
  4. Céline Caillet1,2,3
  1. 1Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Medicine Quality Research Group, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
  2. 2Nuffield Department of Medicine, Medicine Quality Research Group, University of Oxford Centre for Tropical Medicine and Global Health, Oxford, UK
  3. 3Nuffield Department of Medicine, Infectious Diseases Data Observatory (IDDO)/WorldWide Antimalarial Resistance Network (WWARN), Medicine Quality Research Group, University of Oxford, Oxford, UK
  1. Correspondence to Dr Céline Caillet; celine.caillet{at}


Objective Substandard and falsified (SF) veterinary medicines affect animal health, agricultural production and food security and will influence antimicrobial resistance (AMR) in both animals and humans. Yet, our understanding of their extent and impact is poor. We assess the available public domain evidence on the epidemiology of SF veterinary medicines, to better understand their prevalence and distribution and their public health impact on animals and humans.

Methods Searches were conducted in Embase, PubMed, MEDLINE, Global Health, Web of Science, CAB Abstracts, Scopus, Google Scholar, Google and websites with interest in veterinary medicines quality up to 28 February 2021. Identified articles in English and French were screened for eligibility. The Medicine Quality Assessment Reporting Guidelines were used to assess the quality of prevalence surveys.

Results Three hundred and fourteen publications were included with a failure frequency (the percentage of samples that failed at least one quality test) of 6.5% (2335/35 733). The majority of samples were from post-marketing surveillance by medicines regulatory authorities of the Republic of Korea and China. A small proportion (3.5%) of samples, all anti-infectives, were from 20 prevalence surveys, with more than half (53.1%, 662/1246) collected in low-income and lower middle-income countries in Africa and Asia. The prevalence survey sample size ranged from 4 to 310 samples (median (Q1–Q3): 50 (27–80)); 55.0% of surveys used convenience outlet sampling methods. In 20 prevalence surveys more than half of the samples (52.0%, 648/1246) failed at least one quality test. The most common defects reported were out-of-specification active pharmaceutical ingredient(s) (API) content, failure of uniformity of units and disintegration tests. Almost half of samples (49.7%, 239/481) that failed API content tests contained at least one of the stated APIs below pharmacopoeial limits. Fifty-two samples (4.2% of all samples) contained one or more incorrect API. One hundred and twenty-three publications described incidents (recalls/seizures/case reports) of SF veterinary medicines in 29 countries.

Conclusion The data suggest that SF veterinary products are likely to be a serious animal and public health problem that has received limited attention. However, few studies of SF veterinary medicines are available and are geographically restricted. Lower API content and disintegration/dissolution than recommended by pharmacopoeial standards risks treatment failure, animal suffering and contribute to AMR. Our findings highlight the need of more research, with robust methodology, to better inform policy and implement measures to assure the quality of veterinary medicines within supply chains. The mechanism and impact of SF veterinary products on animal and human health, agricultural production, their economy and AMR need more transdisciplinary research.

  • epidemiology
  • public health
  • systematic review

Data availability statement

All data relevant to the study are included in the article or uploaded as supplementary information.

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See:

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Data availability statement

All data relevant to the study are included in the article or uploaded as supplementary information.

View Full Text


  • VV and KB are joint first authors.

  • Handling editor Seye Abimbola

  • Contributors CC, PN, KB and VV designed the research. VV conducted the literature assessment in English and French, respectively. Screening and extraction were performed by VV under the supervision of CC. VV, KB and CC assessed the quality of reporting of the surveys. VV performed the analysis under the guidance of PN and CC. KB, VV and CC prepared the first manuscript draft. CC, PN and KB provided revisions and CC and PN also provided guidance on the overall direction of the study. All authors approved the final version for publication. CC as the guarantor, accepts full responsibility for the finished work and/or the conduct of the study, had access to the data, and controlled the decision to publish.

  • Funding This research was funded by the Wellcome Trust (Grant number 202935/Z/16/Z). For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

  • Competing interests PN and CC are supported by the Wellcome Trust.

  • Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.