Discussion
AT is gaining recognition on the international global health agenda, as evidenced in this systematic review by the increasing frequency of publications from 2000 to 2020. However, many data gaps have not been addressed. During this period, 76% (n=158) of the 207 articles reported all or in part on glasses, with fewer articles available for the other APs, emphasising data gaps in hearing, mobility and especially cognitive functional domains. Older adults (65+ years) were more often included in studies than children under 12 years, and <25% of studies focused exclusively on young children, making it challenging to identify disparities in AP need based on age. This review also highlights the heterogeneity in study design and reporting that has led to a lack of standardisation in population-based AP data collection efforts and limits comparability between settings. Total need indicators were reported from 84 study settings, the majority of which (n=57/84, 68%) reported unmet need >60% among all participants with AP need in each functional domain and in all country income contexts. Total need estimates were also commonly reported across all functional domains except mobility, though functional domains were not equally represented in these studies.
AP indicators were often used variably in the literature. The prevalence of FD was frequently equated to AP need, which can overestimate/underestimate true need and coverage.22 This approach typically lacks a holistic assessment of AP need since it does not account for important data about an individual’s personal factors, including their specific health needs, activities, participation and environmental contexts. All but one mobility study22 made this assumption and relied solely on self-reported assessments, which can be limited by participants’ poor awareness of APs or underlying causes for FD, further misestimating need.9 22 ‘Has AP’ or ‘use’ were also used to approximate ‘met need’ for an AP; all hearing aid studies indicating need reported ‘use’ in lieu of met need (excepting one18). This substitution limits understanding of AP need in multiple ways: in the literature, the ‘use’ indicator has included the use of APs that are appropriate (‘met need’) and APs that might be broken and/or inappropriate (‘undermet need’), which obfuscates remaining need. Denominators used when calculating indicators also varied considerably, encompassing individuals with need, functioning difficulty, included in the study, or extrapolated to the total population. Though the latter can provides useful measures for drawing international comparisons and evaluating trends over time, the variation in denominators overall limits comparability across studies. Each has its use in a comprehensive evidence basis, but more comparable methodology and reporting are needed to improve understanding of population-level need.
Self-reported assessments were typically employed in functional domains where a large sample size was needed and/or the relationship between the individual’s need and a specific AP is complex (eg, mobility or cognition), or multiple APs were considered (eg, grouped APs). Subsequently, clinical impairment and/or functional assessment for all participants was often not feasible. For example, most of the reviewed mobility studies were secondary data analyses, with over half using censuses or national health studies (n=10/15; 67%), while mobility studies that collected primary data tended to have very low numbers of individuals assessed as needing or already using the AP, ranging from 022 to 18640 individuals. Additionally, most studies reporting on grouped APs relied exclusively on self-reported assessment data (n=21/24; 88%). Clinical impairment assessments produce more standardised, comparable data, yet do not always capture personal factors, which are also necessary to holistically evaluate need. This demonstrates the importance of employing multiple types of data in recommending appropriate AT.9
While some established datasets based on universal care18/centralised health record systems46 223 collect potentially impactful population-level data on AP users, these data do not necessarily include everyone. Relying exclusively on these data would miss individuals obtaining their APs by other means, such as private purchase or through the non-government sector. This missing data gap will be even more pronounced where government-led AT provision is more limited. Primary cross-sectional surveys can be helpful to address this gap, yet these surveys can be resource intensive, lack comparability and generalisability, and may not produce timely data needed by AT stakeholders. Our literature presents >150 studies from LMICs, which generate valuable learnings across the sector overall. However, when narrowing to AP-specific or country-specific data, the evidence base drastically decreases, showing the limitations of relying exclusively on few cross-sectional surveys and demonstrates that the largest knowledge gaps are in areas where access to APs is lowest.
Collating this critical body of work to extract sector-wide learnings has been broached, in parts, by other reviews commissioned by the Lancet Global Health,224 the WHO,3 9 225 and development-focused institutes/governmental departments.226 227 The WHO papers cited heterogeneous approaches to assessment,3 9 225 severity of FD for inclusion,9 225 and sampling source demographics,3 9 225 as main challenges to interpreting results across publications, which mirrored our data extraction and presentation experiencePopulation-level data are overall extremely limited, and findings on need must be interpreted with caution. Appropriate research methods must also be used for this sector—RCTs are often unsuitable for AT interventions,3 and based on available data, different approaches may be more effective than others.9 Key gaps in the AT sector described in this discussion are emphasised when considering other AT reviews. Crucial research into effectiveness and follow-up of AT interventions is limited.3 9 225–227 Our review similarly found this, as most primary and secondary studies were cross-sectional and did not incorporate any follow-up data collection. Limited awareness of AT demand and effectiveness was a commonly cited barrier to expanding AT production and access.226 227 Often, available data go unused226 or are not collected alongside quality-of-life indicators.226 Furthermore, standardised impact measurement approaches are also needed.3 9 226 Regarding all types of information relevant to AT, including need indicators, supply and demand data, and product designs, more substantial diffusion is hindered by the fragmented nature of available information.226
We have four main recommendations following our comprehensive review. First, considering the methodological and reporting variation between studies, we recommend establishing a global minimum AP dataset allowing researchers to address specific questions and compare evidence. This dataset should include the following: (1) standardised measures to determine individual need for an AP; (2) standardised APs (eg, APLs);10 228 (3) standardised AP access indicators (as presented in this review) and (4) standardised approaches to measuring them. Second, we recommend the collection and use of data that holistically considers an individual’s personal and environmental factors when assessing their capacity to benefit from an AP. As more holistic measurement methodology is developed, it is critical that it is tested and adapted for diverse contexts, especially LMICs. Third, modules collecting data to inform AP indicators should be included in established population surveys to maximise existing data collection methods and enable more nuanced secondary analyses. This can be supported by working with national statistics offices in both high and LMIC countries. Finally, differentiation should be made between the total using an AP, and within that value, the total with met need. This can highlight undermet needs among AP users, which provides further data about the setting and/or population for which specific APs are not fully appropriate. To begin to collate this dataset, a global AT data portal229 accompanying this review will make all extracted study data available and more accessible. This portal will also serve as a place to host future data, employing features to map evidence and provide context across disciplines to support knowledge sharing in this sector.
Our large-scale review captured >200 studies and benefitted from including five APs across four functional domains, with a broadly inclusive search string and list of article sources. Data extraction criteria were developed to accommodate substantial variation in results reporting, so as much relevant data as possible could be considered, allowing us to extract >650 indicators. Through data extraction, we identified study settings, impairment/FD thresholds and denominators (among other factors) to ensure our comparisons and conclusions are appropriate.
However, this review has several limitations. Given the breadth of literature, we searched terms for FD rather than listing specific health conditions (online supplemental appendix 2), as there is no established list of conditions within each domain/relevant to each AP. Studies may have been missed that focused on specific health conditions without mentioning FD or APs in the title/abstract. This likely occurred for the mobility and cognitive domains, given these are less well defined in terms of which conditions could relate to certain APs. This also means we could not explore the variation in need for APs within a functional domain by certain conditions or pathologies. We also limited the review to five specific APs, while the WHO APL includes 50. Furthermore, a meta-analysis of indicators and exploration into their disaggregation by demographic factors (eg, sex, income, and education) was precluded from the remit of this review due to wide variation in methods/reporting. Finally, some vision studies also reported visual acuity measures, but extracting indicators based on these measures required clinical judgements and assumptions outside the remit of this review. Overall, future domain-specific research is recommended to address each of these limitations, including additional cognitive APs, with appropriate detail to identify sub-population-level disparities in AP access.