Discussion
We assessed time trends of neonatal mortality in 21 SSA countries by urban and rural areas between 1990 and 2019. The analysis revealed that urban–rural disparities in NMR differ across countries, with most countries showing a narrowing of the urban–rural gap. Whereas in two countries, Guinea and Niger, rural NMR was still significantly higher than urban NMR, Tanzania is the one country that has a reverse pattern. While the NMR point estimate in urban areas had been higher than rural since 1999, it was significantly higher for the first time in the most recent DHS collected in 2015–2016. It is a result of continued decline in rural NMR over time, which was not matched by equal speed of decline in urban areas; a pattern seen in other SSA countries examined. We assessed potential explanatory factors of this twofold higher urban–rural difference in NMR in Tanzania, but found that even after inclusion of other risk factors, the odds of neonatal death remained 1.9–2.1 times higher in urban compared with rural areas. There could be three broad explanations for this finding: (1) it is a result of confounding (ie, important explanatory factors/confounders are not included, or insufficiently included, in the multivariable model); (2) the result is due to biased reporting of neonatal deaths (ie, that neonatal deaths are over-reported in urban areas and/or under-reported in rural areas) or some level of misclassification of the exposure to urban/rural environments and (3) that the NMR is truly higher in urban compared with rural areas. It is possible that several of these explanations are involved. The overarching question we raise in this paper is, if such difference truly exists in Tanzania, whether such pattern of higher NMR in urban areas is an indication of a phenomenon occurring also in other SSA countries. We focus on three potential explanations for the high estimated NMR in urban areas in Tanzania, with a view of understanding the drivers that could potentially contribute to such findings, and implications for further research and policy-making.
First, the urban–rural difference in NMR in Tanzania could not be explained by the available socioeconomic, pregnancy-related and sanitation measures, although some of these factors were independently associated with NMR (multiplicity of pregnancy, birth order and birth interval, older maternal age and male sex). The higher NMR in urban areas was largely driven by higher mortality rate of newborns between 1 and 7 days following birth. The most likely causes of death in this time period relate to the quality of intrapartum care. If our finding is true, the most likely contributing factors are quality of maternal and newborn care during the intrapartum period, followed by delays in care-seeking for babies with complications (whether born at home or those who developed symptoms after discharge from facility where they were born), and quality of care provided to sick newborns. The chance of being born in a hospital is three times as high for babies from urban compared with rural areas (62% vs 21%). Given the pressure exerted by population increase in urban areas on existing resources, particularly public health facilities providing care to the poor, it is possible that crowding, staff shortages, and lack of routine provision of essential care elements converge in such urban health facilities and contribute to increased risk of neonatal mortality.37–39 Additionally, the risk of acquiring nosocomial infections within health facilities is particularly relevant to premature and low-birth newborns who are highly vulnerable to acquiring and dying from such infections.
As for the analyses in the subsample of babies weighed at birth, we report some nuances. If the babies were being weighed that means an SBA was probably present. However, the presence of an SBA did not necessarily decrease the risk of NMR. No distinction was made between SBA cadres, and the overall category SBA consists of varying levels of skilled health personnel including doctors, nurses, midwives and combinations of these providers within professional teams. Women tend to seek help at a healthcare facility more often when complications occur, which might explain our finding of nearly double risk of NMR associated with caesarean sections. In future studies, the reasons for women delivering in a healthcare facility or at home, incorporating the diversity of people involved/services provided by the different SBAs, needs to be disentangled.
Second, beyond individual health-seeking behaviour, obstetric risk factors, and quality of care, broader issues related to socioeconomic determinants, urban living conditions and urbanisation processes might also play a role in an increased risk of neonatal mortality in urban settings. Today, Tanzania is undergoing rapid urbanisation and Dar es Salaam is predicted to have over 10 million inhabitants by 2030, increasing from 2.3 million in 2000.40 This growth is largely fuelled by rural–urban migration resulting in the lateral expansion of informal settlements and rapid expansion of rural trading centres amalgamating with other rural towns and nearby cities within Tanzania.25 Where historically the urban population was better educated and had higher incomes compared with the rural population,2 3 rapid urbanisation, including in peripheral towns, has led to haphazard informal settlements evident today, increasing the heterogeneity of the urban population25 and exacerbating vulnerability through a complex interplay between urban conditions, health service provision, and suboptimal quality of care. For example, air pollution is worse in urban areas and is a risk factor for prematurity, which in turn is a risk factor for neonatal mortality in the absence of accessible, affordable high-quality care for sick/small newborns. Mapping urbanisation processes, and the consequences for sociodemographics and quality of care affecting population health need to be further examined in future research.10 11 41 This can be done, for example, by examining whether a dose–response relationship exists between the extent of urbanisation and NMR in Tanzania and other countries at risk of reversing the urban advantage in neonatal survival, including Ghana, Ethiopia, Malawi, Uganda, Zambia and Kenya.
Third, the potential presence of bias needs to be considered. The characterisation of clusters as urban or rural on the DHS sampling strategy might not accurately capture the lived reality, especially if it based on historical census tract designations rather than on urbanicity at the time of survey. It is also possible that the higher NMR in urban areas in Tanzania can be partly explained by the under-reporting of neonatal death in rural areas; these deaths might have been misclassified as stillbirths or not reported at all.42 However, the Tanzania DHS 2015–2016 results showed that also the perinatal mortality rate (stillbirths and early neonatal deaths per 1000 pregnancies of seven or more months’ duration) was higher in urban (47) compared to rural areas (37). If this bias plays a role in the findings in our paper, it is therefore more likely to operate through under-reporting of perinatal deaths in rural areas rather than through differential misclassification of neonatal deaths as stillbirths. Lower levels of maternal education were more common in rural areas, and may contribute to underreporting neonatal deaths. This resonates with our finding that women with some education reported higher NMR than women without education. Furthermore, reporting of neonatal deaths in urban areas may be higher as more births take place with the presence of an SBA.43 There is potential that recall bias is present and future studies should focus on the urban–rural differences in the combined phenomenon of perinatal mortality as both are critically linked to quality of intrapartum care. However, it seems implausible that bias would account for the entirety of the urban–rural difference in NMR in Tanzania, as this pattern, has been evident in the DHS data since 1999 and not just persisted but widened over time, while many of the socioeconomic characteristics giving rise to under-reporting and misclassifications have changed dramatically over the past 20 years.
Limitations
First, we limited our time trend analysis of SSA countries to those with DHS surveys, in order to maximise comparability. However, due to varying sample sizes over time, we see a volatility in the DHS NMR estimates in some countries. Our analysis of Tanzania benefited from a large sample size of births to examine a range of obstetric and neonatal factors, healthcare factors, child characteristics and distal factors previously linked to neonatal mortality, and which we hypothesised might be on the causal pathway between urban residence and neonatal mortality. The nature of the cross-sectional study design does not allow for causality to be inferred and self-reported nature of all variables, including neonatal mortality, was a further limitation. We found a large extent of missingness in birth weight, and had no data on gestational age and other important covariates, such as perception and accessibility of maternal and child health services, and quality of care within health facilities.44 45 Finally, this study would have benefitted from a more nuanced, granular understanding of the extent of urbanicity in order to discuss the potential for causality in this association. We recommend that future studies (1) capture relevant distal and proximal factors potentially on the causal pathway (eg, quality of healthcare, exposure to air pollution) and (2) assess the extent of a dose–response relationship between NMR and increasing urban-nature of residence.46