Discussion
This is the first cross-country examination of the relationship between depressive symptoms and multidimensional poverty among youth (11–25 years old) in South Africa, Colombia and Mexico. Our findings illustrate the importance of country context in the relationship between multidimensional poverty and youth depressive symptoms. While a positive association was observed between depression and multidimensional poverty in Colombia and Mexico, an association was not observed for South Africa, likely due to the lack of an association for child labour and health insurance in this country. However, one dimension of poverty, formal employment by another household member, did show an association with depressive symptoms, as well as household income, suggesting that household income may be more protective against depressive symptoms among youth in this country.
The relationship between multidimensional poverty and youth depressive symptoms is not the same in all countries, and our findings demonstrate that certain dimensions may be more salient for mental health in different countries. In Mexico and Colombia, as well as the harmonised dataset, depressive symptoms seem to be associated with individual deprivations affecting the adolescent directly (such as child labour, school lag and access to health insurance), then with deprivations operating at the household level (such as living in a household where other adult members are illiterate, have lower levels of education or have had a long-term unemployment episode). These deprivations may prevent young people from investing in their education, taking them further away from their future aspirations and expectations, which may lead to poorer mental health, independently of the education or employment of their parents. Consistent with this view, evidence from Colombia suggests that education is one of the most important factors contributing to future aspirations in youth.38 39 Future research should explore the causal nature of this association, to understand both how depressive symptoms influence educational attainment, as well as how educational attainment in turns influences future depressive symptoms. Our findings suggest that there is less of an association between depressive symptoms and household level deprivations. However, our findings are consistent with an increasing body of literature suggesting that household level deprivations have important limitations; for example, they are ‘gender-blind’ as they do not consider intra-household differences by gender in resource allocation.40 Age and status within the household are also important dimensions that may impact the distribution of resources within the household. Measuring poverty at the household level may thus lead to misclassification of poor individuals as non-poor, or overlook inequalities between individuals within a household.40 This may be particularly important when measuring poverty among young people, given potential differences between boys and girls, as well as differences in the distribution of resources between young people and older adults in the household.
However, an opposite pattern was observed in South Africa, where only one deprivation associated with adult household members, namely deprivation in formal employment, was associated with depressive symptoms, but not individual level deprivations. The relationship between multidimensional poverty and youth depressive symptoms is not the same in all countries, as the importance of specific dimensions for mental health varies across countries. In Mexico and Colombia, depressive symptoms are associated with more individual deprivations than in South Africa, where household deprivations show more associations with depressive symptoms. The disparity in findings across countries may reflect the high levels of unemployment and lower levels of earnings in South Africa24 relative to the other countries. In 2019, unemployment levels in South Africa hit an all-time high of 29.1%, and an even higher proportion of 33% among young people, numbers that are likely to have risen further since the COVID-19 pandemic in 2020.41 The psychological consequences of unemployment on self-esteem, psychological distress and depression in South Africa are well documented.42 43 It is also important to note that each country has different policies in place related to poverty which may confound the results. For example, the countries have government cash transfer programmes that provide household grants to low-income households, that have been shown to impact youth mental health, but these cash transfers differ in their volume, conditionality and targeting.28 Further research should assess poverty-reduction policies that might explain cross-country differences in the relationship between multidimensional poverty and mental health.
Given high unemployment rates, young people in South Africa may have reduced aspirations for the future, hence being deprived in education may have less of an impact on future aspirations and mental health. By contrast, in Colombia and Mexico, where youth unemployment rates are high by international standards but not to the levels of South Africa, poor education may be perceived as a limiting factor in achieving aspirations for the future, which in turn may increase depressive symptoms. Overall, it would seem as if patterns of associations were more aligned in Mexico and Colombia, potentially reflecting to some extent a shared Latin American cultural, social and economic heritage that shapes young people’s experiences of poverty and mental health. Interestingly, when we defined poverty based on income, individuals in the high-income group did have significantly lower depressive symptoms in South Africa, but not Colombia or Mexico. Clearly, not all deprivations are equally important for depressive symptoms in youth across different countries. These findings suggest that socioeconomic and country-context must be taken into account in understanding the relationships between poverty and depressive symptoms in young people. Our findings should be followed by more detailed prospective, longitudinal studies to determine the mechanisms by which different poverty indicators are causally related to youth depression in varied countries.
Our results also support the case for using a multidimensional approach, especially when considering the lack of association with depressive symptoms and income poverty. A significant proportion of people earning the highest income were still classified as multidimensionally poor, while the overlap between the multidimensional and income poverty was low, demonstrating that both variables are measuring very different aspects of poverty and this may have a bearing on mental health. Some individuals not classified as income poor in our data were deprived in dimensions of poverty that are associated with mental health, for example, 87% of those deprived in schooling lag were not classified as income poor. Furthermore, there was no relationship between income and depressive symptoms in the harmonised dataset. This demonstrates further that relationships between specific dimensions of poverty differ depending on country. Indeed, the relationship between income and depressive symptoms has previously shown to be inconsistent.3 9 While household income may not always be associated with depressive symptoms, deprivations in other areas may impact their mental health. This showcases the importance of using a multidimensional approach and moving away from the more traditional measures of poverty.
For instance, deprivation in school attendance was not associated with depressive symptoms in the harmonised dataset or in any of the individual countries, whereas school lag deprivation was, suggesting two different mechanisms. A potential explanation is that depressive symptoms influence the ability to concentrate and perform well at school leading to school lag. In addition, poor academic performance may lead to long-term negative impacts on self-esteem and increase the risk of depressive symptoms.44 School attendance deprivation, on the other hand, may be influenced by a wide variety of reasons which are not necessarily related to mental health, such as geographical location, or the availability of schools in the area of residence.
Overall, our findings highlight the fact that relationships between poverty and depressive symptoms in young people differ by dimensions of poverty and country. Thus, future studies should go beyond monetary dimensions of poverty and examine how specific deprivations relate to depressive symptoms in young people.
These findings are particularly pertinent in the current context of the COVID-19 pandemic. Research suggests that the COVID-19 crisis has increased global poverty levels45 and impacted youth mental health, particularly depression and anxiety.46 The impact of the pandemic may differ across countries depending on the severity of the pandemic, governmental support and countries healthcare systems. Further research should seek to understand how COVID-19 has impacted multidimensional poverty, how this has affected youth mental health and how these effects differ across different countries.
Strengths and limitations
This is the first cross-country examination of the relationship between depressive symptoms and multidimensional poverty among young people in three UMICs. However, several limitations should be considered. A more comprehensive cross-country analysis with many more countries is required to understand how this relationship varies in more diverse contexts across Africa, South-East Asia, the Eastern Mediterranean region, Western Pacific, the Americas and the European region. While there is value in a cross-sectional analysis, this approach did not enable us to examine the complex dynamics of poverty and mental health in the same way that it would be possible in a longitudinal study. In addition, some of the poverty measures we employed may not capture the nuances of each country. For example, our measures in South Africa may not have captured the impact of very high rates of deprivation in access to health services and child labour. On the other hand, in sensitivity analyses that used an adapted version of the MPI that excluded these dimensions, the relationship with multidimensional poverty and depressive symptoms became significant, suggesting that these current measures in the MPI may not be valid for South Africa.
In addition, it is possible that by including all indicators in the same model, we are blocking potential mediating factors should, for example, individual dimensions be mediators of the association between household dimensions of poverty and depressive symptoms. Nevertheless, results were very similar when separate models were constructed for each group of indicators (results available on request).
While it was not possible to look at the relationship with multidimensional poverty and other dimensions of mental health in the current data, we suggest that future research should explore whether different dimensions of mental health, to assess whether poverty relates to depression in a way that is different from how it would relate to anxiety or to schizophrenia.
There are also limitations associated with the comparability of our measure of multidimensional poverty across countries. There was a negative skew of the C-weighted sum of deprivations in South Africa, where distributions were clustered more towards the higher multidimensional poverty, compared with Colombia and Mexico, where there was a more even distribution. Indeed, we find that the distribution of the MPI was significantly different in South Africa relative to Colombia (two-sample Kolmogorov-Smirnov test=0.37 p<0.001) and Mexico (two-sample Kolmogorov-Smirnov test=0.12 p<0.001). Visual exploration of kernel plots suggest that this might be due to a more compressed and right-skew in the distribution of the MPI in South Africa relative to Colombia and Mexico. It is also important to note that the MPI was adapted for Colombia. This may explain why we did not observe significant associations between some poverty dimensions and depressive symptoms in South Africa. However, even if not fully valid for South Africa and Mexico, the CMPI was still likely to be a more valid measure of multidimensional poverty than the Global MPI in the context of UMICs.
In addition, the timing of the surveys differed between countries and changes during that time in the prevalence of poverty or mental health across countries may have impacted the results. Over the period of study, data from the World Bank suggests that the multidimensional poverty headcount ratio (% of total population) changed little for Mexico—from 46% in 2010 to 43.4% in 2016—and South Africa—from 8% in 2011 to 7% in 2016. By contrast, in Colombia, there was a decline in the multidimensional poverty headcount ratio, which went from 30.4% in 2010 to 17.8% in 2016. It is possible that the relationship between poverty and depressive symptoms for Colombia may have been different in the period covered by South Africa. As the group of individuals defined as poor becomes smaller and more selective, it is increasingly comprised individuals who are disproportionately disadvantaged.47 As a result, there may have been associations for Colombia but not South Africa as those in poverty were a more selective group than in 2010, where a larger fraction of the population was classified as poor. However, these changes do not necessarily imply a change in the relationship between multidimensional poverty and mental health and are unlikely to fully explain the cross-national variations we observed in this relationship.