Discussion
Risk-compensating hypothesis was originally developed by economists while studying the effects of regulations to increase motor vehicle safety23 and is closely related to the ‘risk homeostasis’ hypothesis in psychology.24 Together, these hypotheses suggest that people have a target level of perceived risk, and they act to keep that level of risk constant; as a result, any intervention that reduces the risk of an activity may be compensated by risk-taking behaviour of another type. This compensating behaviour could reduce (partial compensation) or completely nullify (full compensation) the intended benefits of the intervention, with practical implications for the actual effectiveness of the intervention.
Due to its importance for intervention design in practice, risk compensation has attracted significant attention among researchers, who study the presence or absence of the effects in diverse areas. These include motor vehicle regulations to improve occupant and non-occupant safety,23 25 helmet regulations to improve bicycle rider safety,26 27 human papillomavirus vaccination to prevent cervical cancer28 29 and pre-exposure prophylaxis to prevent HIV infections.30 Detail discussion of this literature is beyond the scope of this research, but reviews by others tend to agree that the evidence in favour of the hypothesis is rather thin in these areas.29 31–33 This does not necessarily prove that risk compensation would be absent in other areas, such as mask mandates, since these are all very different types of interventions. Indeed, the four influencing factors—visibility of the intervention, effects on a person, motivation to change behaviour, and ability (control) to change behaviour—that have been proposed to explain the existence and extent of risk-compensating behaviour can be affected very differently by different types of interventions.34 As Hedlund34 concludes in his well-balanced appraisal of risk compensation, ‘Never assume that behaviour will not change.’ To this end, concerns have been raised about the potential risk-compensating effects of COVID-19 vaccination, too.35
More pertinent to this study are six experimental studies investigating the effects of face masks for managing viral respiratory infections.36–41 These studies found that the wearing of masks did not reduce the frequency of hand washing or hand sanitising, which were taken as measures of risky behaviour. In the context of COVID-19, risk-compensating behaviour of mask use was not observed in a UK study based on a self-reported response to a questionnaire survey.42 However, none of these studies were designed to elicit risk-compensating behaviour. Also, interpreting the difference between two groups of people (mask users and non-users) at around the same time as changes in behaviour pre-mask and post-mask mandate, as done in some of these studies,40 41 43 is flawed.
In the mobility and travel space, risk compensation in the context of mask mandates for COVID-19 can manifest in different ways, for example, by increasing more contact with people, by reducing the distances maintained while walking or queueing, or by increasing travel-related activities in general. At least one study found an overall increase in the number of contacts after face covering interventions in Denmark, supporting the risk compensation hypothesis.44 Two studies did not find any reduction in the interpersonal distances in queues after the mandatory mask rules in Germany and Italy,45 46 but another stated preference experiment suggests that participants were willing to reduce their walking or queueing distances from strangers if either was wearing a mask.47 Yet another observational study found mixed evidence on distancing in Denmark, depending on the type of locations.44 In Bangladesh, the effects of nudges and interventions on mask usage and interpersonal distances were studied (interpersonal distances increased due to nudges), but not directly the risk compensation effects of mask mandates.48 At the time of writing, all of these studies were not peer reviewed, so it is difficult to draw robust conclusions from this literature; however, it appears that the evidence is mixed both for number of contacts and interpersonal distances.
The only peer-reviewed work on the effects of mask mandates on mobility or travel activities supports the risk compensation hypothesis.49 That study also used location data from smart devices to report an increase in the number of visits to public places (restaurants, parks, health and personal care, etc) and a reduction in home-dwelling time in the USA after the mask mandate.49 A non-peer-reviewed study analysed Google mobility data (similar to the current study) to report no such increases in mobility in Germany,50 yet, the simultaneity of the mandatory mask policy with other policies in that study makes that conclusion less reliable. Nonetheless, whether these differences in risk compensation exist between countries and what drives these differences (eg, methods, data, compliance culture, enforcement strictness, pandemic stage) in different regions of the world is an important area of future research.
It can be argued that what is measured in this study is not risk compensation per se, that is, people in Bangladesh did not intentionally increase their mobility because masks offered them protection, instead, they may have viewed the mask mandate as a sign for returning to some form of normalcy. As such the ‘signal’ effect cannot be separated from the actual risk-compensating behaviour. However, from a policy-making perspective, the distinction is possibly not very important. What is important is whether the mask mandate had increased mobility and thus was likely to have reduced at least some of the benefits expected from the mask use rule. The evidence in favour of increased mobility, which in turn is correlated with increased COVID-19 transmission, is strong—both in this study and the only other peer-reviewed work on the topic.49
In the context of risk compensation, the more important question is ‘not yes or no, but when and how much’.34 Public health decision makers will be more interested in knowing whether the additional mobility (or risky behaviour) is large enough to entirely offset the beneficial effects of wearing face coverings. If not, the net effect is still beneficial and the mandatory mask intervention still remains desirable. On the other hand, even if risk compensation is partial, in marginal scenarios small increases in mobility (or risky behaviour) across the population could be the difference between an exponential growth and the containment of the pandemic.49 Indeed, our exploratory analysis (online supplemental table S6) hints at the possibility that inadequately administered mask mandates may have nullified the expected benefits of mask wearing in Bangladesh. As such, it is important that constant nudges and incentives are provided to ensure adherence to mask wearing,48 rather than simply issuing a mask mandate without robust enforcement and implementation. Further research is also needed to precisely quantify the risk compensation effects of mask wearing and inadequate implementation effects of mask mandates in the context of COVID-19 in order to avoid potential overprediction of the intended beneficial impacts of mask mandates.