Introduction
South Africa has the highest number of HIV infections worldwide, with an estimated 7.8 million people living with HIV (PLHIV) and 5.0 million on antiretroviral therapy (ART) in 2019.1 Despite having the largest ART programme in the world, over 23% of all deaths in South Africa in 2019 were AIDS-related.2 HIV transmission and AIDS-related deaths can be greatly reduced by identifying PLHIV who are unaware of their HIV status early, linking all PLHIV to ART and retaining them in care.3 The South African government is dedicated to meeting the UNAIDS 95-95-95 fast-track targets by 2025,4 which aim to have 95% of PLHIV diagnosed, 95% of those diagnosed on ART and 95% of those on ART virally suppressed by 2025. In 2017, a HIV household survey showed that 85% of South African PLHIV aged 15–64 years had been diagnosed, although men had a lower rate of diagnosis compared with women (80% vs 89%, respectively).5 Increasing the uptake of HIV testing services (HTS) by introducing novel testing strategies is critical to achieving the UNAIDS target to diagnose 95% of PLHIV in the coming years.
In order to expand HIV testing coverage, the South African National Department of Health (NDoH) has implemented community-based testing to accompany existing conventional HTS, which is most frequently conducted at primary healthcare (PHC) clinics. Recently, HIV self-testing (HIVST) technology has been introduced to give people the opportunity to self-diagnose their HIV status. HIVST involves a person being able to privately collect their own specimen (most often oral fluid), performing the rapid diagnostic test and interpreting the result themselves, either assisted by HIVST distribution staff or unassisted.6 Recent studies in sub-Saharan Africa, including South Africa, have shown that HIVST is acceptable, feasible and effective in increasing HIV testing uptake,7–9 providing an alternative testing strategy that can overcome sociostructural barriers associated with conventional HTS in a clinic setting, including the stigma associated with accessing testing and limited hours of clinic availability.10
Furthermore, many health services have been disrupted due to COVID-19 as governments across high HIV prevalence countries instituted lockdowns and other forms of restrictions to curb the spread of COVID-19.11 Though many of the restrictions have since been lifted, there remains a concern that with the pandemic still ongoing, people might be reluctant to attend PHC clinics for HIV testing. For this reason, US President’s Emergency Plan for AIDS Relief (PEPFAR) and PEPFAR-supported partners have recently recommended scaling up decentralised access to HIVST.12 Since 2016, the Unitaid-funded Self-Testing AfRica (STAR) Initiative started distributing HIVST kits through a variety of approaches/modalities in Malawi, Zambia and Zimbabwe, and later expanded to eSwatini, Lesotho and South Africa. Coordinated economic analyses alongside this roll-out found that the cost per kit distributed (in 2019 US$) was $8.91 in Malawi, $14.70 in Lesotho, $14.90 in Zimbabwe and $17.70 in Zambia using community-based distribution strategies,13 14 $12.82 in circumcision clinics in Zambia14 and $8.66 in Malawi, $9.15 in Zimbabwe, $5.37 in Zambia and $13.40 in South Africa when kit distribution was integrated into public primary care facilities.15 A cost-effectiveness analysis of an array of community-based distribution approaches and settings in Sub-Saharan Africa showed these can be cost-effective if implementation is targeted based on HIV prevalence and health benefits, and if costs are considered over a relatively long time horizon.16 In our analysis of South Africa’s distribution programme, we found that facility-based distribution modalities had on average higher cost per kit distributed than community-based distribution approaches, which was unlike observations in Zambia and Zimbabwe.17 18
Previous modelling work by our team in 2019 using preliminary cost and effectiveness data on HIVST from other settings, showed that out of ten testing modalities analysed, HIVST combined with home-based testing would have the greatest impact on the proportion of PLHIV who are diagnosed, increasing the fraction of diagnosed PLHIV to 96.5% by 2030 and would be highly cost-effective compared with currently funded HIV interventions.19 More recently, using data on intermediate outcomes such as person screened positive, tested positive in confirmatory testing and initiated on ART from the STAR-supported HIVST roll-out in South Africa, we established that testing strategies which focus on high yield populations such as female sex workers and high-volume distribution modalities such as taxi rank and workplace distribution were more cost-effective than other community-based or any of the facility-based testing strategies.18
This work is an update to our previous work, using data collected under the STAR Initiative to inform both effectiveness and cost parameters in the Thembisa model,1 in order to model the impact and cost-effectiveness of different HIVST distribution modalities over a 20-year time horizon (2020–2039) and, based on these outcomes, determine the highest impact and most cost-effective combination of HIVST distribution modalities in a mathematical optimisation.