Discussion
Early diagnosis of TB is essential because it shortens time to appropriate treatment, prevents severe morbidity and mortality.15 21 Using implementation of TB diagnostics as a model and benchmarking on the WHO recommendations, we assessed the barriers and opportunities to overcome them for maximal uptake and utilisation of diagnostic tools into policy and practice in in LMIC setting. At the time of research, 2016–2017 the WHO implementation recommendation was district and regional hospital level for Xpert MTB/RIF and LPA, respectively.8 9 Full capacity use of Xpert MTB/RIF was set at a minimum of eight tests per day while no utilisation limit was set for LPA. It is important to note that the actual impact of WHO recommendation is realised by customisation into country specific policy guidelines.
In the study countries, use of Xpert MTB/RIF and LPA was not universal for all presumptive TB. Xpert MTB/RIF was recommended for HIV positive cases or those who have been in contact with drug resistant case.22–24 LPA was modelled along the use of culture recommendation, that is, referral for culture and DST for smear positive cases at 2 or 3 months of anti-TB treatment. We note that the algorithm for Xpert MTB/RIF has since changed to cover all presumptive TB cases and future studies should test whether this has improved the rate of utilisation.
Irrespective of the TB testing algorithm, our findings show that there are fundamental health system and socioeconomic—cultural barriers that hinder maximal uptake and utilisation of health technologies. In this paper, we focus on health system challenges and show that uptake and utilisation of molecular and microbiological (culture) diagnostics in LMIC setting is still below expectation. Low uptake of diagnostics was mainly attributed to underfinancing of healthcare followed by lack of awareness by both district health officers and practitioners at HCFs. Procurement difficulties, inadequate human resource and utilities such as water and electricity were highlighted as underlying suboptimal utilisation of molecular diagnostics hereby referred as Xpert MTB/RIF and LPA.
While the private sector plays a major role in providing healthcare in the studied countries, government was found to be the main TB service provider, giving over 80% of diagnostic and treatment services. This could be due to the complexity of managing TB that deters private healthcare providers from investing in it. In this case, the importance of government in expanding access of diagnosis and treatment services cannot be more emphasised. This makes public servants like district/county health officers even more important. Our findings show that the health officers were well informed of the state of health services in their areas of jurisdiction because their survey responses were corroborated by healthcare practitioners at the HCFs. However, there was no correlation between the roles they performed and degree of implementation of diagnostic tools.
Despite its technical limitations, smear microscopy was widely implemented and utilised diagnostic for TB at all levels of the healthcare system in Kenya, Tanzania and Uganda.25 26 We believe low-acquisition cost, space and energy requirements make the microscope more attractive for HCFs to implement.27 Furthermore, the microscope is a multipurpose platform often serving other functions such as diagnosis of malaria, helminths and other bacterial infections in low-income countries. Technical limitations such as low sensitivity and specificity for diagnosing TB have less impact on the choice of diagnostic methodology. Technical challenges notwithstanding, for example, the low sensitivity of smear microscopy revealed by the 2016 Kenya TB prevalence survey where smear microscopy only detected 46% cases compared with 78% by Xpert MTB/RIF,28 a device that serves other diagnostic needs at the HCF makes more economic sense when deciding technologies to purchase. Therefore, investing in open rather than closed systems will go a long way in maximising uptake of new health technologies into policy and practice.
WHO approved Xpert MTB/RIF for implementation up to district hospital level.9 29 Our results show that, out of the 57 level 3 (district/subcounty) hospitals, only 56% had the Xpert MTB/RIF instruments and only 14% used the instruments to capacity, that is, performing eight or more tests per day. There was, instead, higher, close to 100% coverage at level 4 and 5 HCFs with corresponding high full capacity utilisation of 27% and 51%, respectively. It is, therefore, not clear the model followed in allocating the Xpert MTB/RIF instruments. For instance, in Kenya some counties had more than one Xpert MTB/RIF instruments per subcounty while others had two instruments serving over 10 subcounties. In line with this observation Oliwa et al found variability in spatial distribution of diagnostic services in Kenya suggesting a non-need driven allocation of diagnostic platforms.30
Only two (1.4%) of the audited HCFs used the Xpert MTB/RIF at point-of-care (in consultation room). In most cases, Xpert MTB/RIF results were not available in the same day, which means the speed advantage of Xpert MTB/RIF is not being realised. It is also not clear whether both doctor consultation and Xpert MTB/RIF testing were going on in the same room. The higher the HCF was in the health system hierarchy the higher the utilisation of Xpert MTB/RIF instruments. Limitations such as procurement, inadequacy of utilities and human resources were less frequent at higher level HCFs. In line with Pooran et al, our findings show that a hub system with an effective sample referral network may be more cost-effective than placing Xpert MTB/RIF machine at every HCF.31 With this approach, Xpert MTB/RIF may no longer qualify as near point-of-care test, but its utilisation will be more cost-effective. It has been suggested, however, that decentralisation of Xpert MTB/RIF can be cost-effective if the testing volumes are high in peripheral HCFs32 and there is good flow of funds to ensure availability of consumables. The high testing volume—decentralisation model contradicts the novel battery powered single module point-of-care GeneXpert OMNI because it would require 16 hours to test eight samples thus increasing turn-around-time and cost more to implement in high TB burden settings.33 34
The LPA was the least implemented diagnostic test, yet it is the only approved rapid DST diagnostic for multidrug-resistant TB.35 Although approved for implementation at regional (L4) hospital, only 1/34 (3%) reported possession of LPA platform, which they were unfortunately unable to execute since they were trained by the test manufacturers. Lack of awareness emerged as the second main factor limiting the implementation of LPA. Surprisingly, almost 50% of health administrators and practitioners were not aware of LPA as a diagnostic for TB. Without awareness, there is no chance that such a diagnostic could be on the list of diagnostics to acquire by either HCF or district health administration. Furthermore, lack of awareness by practitioners is most likely to limit referrals for a given test and thus hindering its utilisation. Space intensiveness and laboriousness were highlighted as limitations for high utilisation by HCFs who had the LPA service. This is an eye opener for health technology developers to make technologies that are compatible with the available infrastructure as well as investing in increasing awareness and accessibility of these technologies especially in high TB burden settings.
Culture, the gold-standard diagnostic for TB36 was only found at a 5% implementation level across the three countries. All culture laboratories were associated with level 5 HCFs (national, consultant or zonal referral hospitals). On average culture laboratories serve 20 million or more people. Level 5 hospitals were more likely to perform culture and DST than lower HCFs which did not have the facilities. The presence of a culture laboratory at a facility did not change the time-to-culture-result, 2 months at level 3, 4 and 5 HCFs. An extended time-to-result could discourage clinicians from referring samples for culture since the results would not come in time to inform their clinical decisions. The limited availability of culture labs and very low referrals for culture shows the three countries are not on course to achieve the universal DST access target of 100% by 2020 (WHO framework of indicators and targets). While culture is relatively easy to perform and cheaper, practitioners indicated they would spend a little more money for a hard to perform, expensive but accurate test with shorter time-to-result diagnostic technology. The underutilisation of culture could also be attributed to the WHO algorithm because the recommendation at the time of the study suggested a culture be performed if the patient sputum is smear positive at month two or three of treatment.26 37
The low degree of coverage and utilisation of molecular and culture tests revealed by our study is an indication that TB is most likely underdiagnosed in the region and more so, drug resistant TB. Global estimates show 3 million TB cases go undetected every year.7 Our findings also indicate that universal DST as recommended by WHO is currently unachievable until such a time when the countries have developed required diagnostic capabilities.38 Treatment response monitoring needs of drug susceptible TB in the region are largely met due to wide coverage of smear microscopy but not drug resistant TB which requires a combination of microscopy and culture to monitor.37 39 Challenges associated with microscopy and culture for monitoring treatment response led the WHO to recognise the University of St Andrews developed TB Molecular Bacterial Load Assay (TB-MBLA) as a candidate to replace the two tests for monitoring TB treatment response.40 41 Like other molecular diagnostics, maximising uptake and utilisation of TB-MBLA requires addressing the barriers highlighted in this paper.
In the same trend, human resources capacity increased with the level of HCF, which partly explains higher uptake and utilisation of diagnostic services at these healthcare centres. Higher level HCFs are more likely to be in the urban centres with many social amenities attractive to professionals to come work and stay. Deliberate efforts must be made by national governments to ensure appointment and retention of healthcare practitioners in rural areas.
Health budgets in the study countries are largely donor dependent and thus any economic downturns in donor countries have ripple effect on the delivery of diagnostic and treatment services in LMIC settings. This is more so in the era of the COVID-19 pandemic that has ravaged global economy with traditional donor countries experiencing up to 10% or more shrinking of their economies.12 It is more prudent to state that LMICs probably need to address the need to increase domestic funding for healthcare including TB control services if the End TB Strategy has to be realised.
Engaging policy-makers unravelled valuable ideas on how to practically increase research impact and domestic financing to sustain uptake of health technologies and ensure quality healthcare. A Health tax on particular goods and services to build revenue base for funding healthcare programmes, research and innovation was recommended as the best way to go. The views from policy-makers clearly demonstrate how an invaluable partner they are in research and its translation to policy and practice. Response to COVID-19 is a good example where in most countries scientists and policy-makers have worked hand-in-hand to use available knowledge and tools to save lives while searching for more effective medical remedies goes on.