Article Text

Empowering the crowd: feasible strategies for epidemic management in high-density informal settlements. The case of COVID-19 in Northwest Syria
  1. Alberto Pascual-García1,
  2. Jordan D Klein2,
  3. Jennifer Villers3,
  4. Eduard Campillo-Funollet4,
  5. Chamsy Sarkis5
  1. 1Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
  2. 2Office of Population Research, Princeton University, Princeton, New Jersey, USA
  3. 3Princeton Environmental Institute, Princeton University, Princeton, New Jersey, USA
  4. 4University of Sussex, Brighton, UK
  5. 5Pax Syriana Foundation, La Valeta, Malta
  1. Correspondence to Dr Alberto Pascual-García; alberto.pascual{at}env.ethz.ch

Abstract

More than 1 billion people live in informal settlements worldwide, where precarious living conditions pose unique challenges to managing a COVID-19 outbreak. Taking Northwest Syria as a case study, we simulated an outbreak in high-density informal Internally Displaced Persons (IDP) camps using a stochastic Susceptible-Exposed-Infectious-Recovered model. Expanding on previous studies, taking social conditions and population health/structure into account, we modelled several interventions feasible in these settings: moderate self-distancing, self-isolation of symptomatic cases and protection of the most vulnerable in ‘safety zones’. We considered complementary measures to these interventions that can be implemented autonomously by these communities, such as buffer zones, health checks and carers for isolated individuals, quantifying their impact on the micro-dynamics of disease transmission. All interventions significantly reduce outbreak probability and some of them reduce mortality when an outbreak does occur. Self-distancing reduces mortality by up to 35% if contacts are reduced by 50%. A reduction in mortality by up to 18% can be achieved by providing one self-isolation tent per eight people. Protecting the most vulnerable in a safety zone reduces the outbreak probability in the vulnerable population and has synergistic effects with the other interventions. Our model predicts that a combination of all simulated interventions may reduce mortality by more than 90% and delay an outbreak’s peak by almost 2 months. Our results highlight the potential for non-medical interventions to mitigate the effects of the pandemic. Similar measures may be applicable to controlling COVID-19 in other informal settlements, particularly IDP camps in conflict regions, around the world.

  • epidemiology
  • COVID-19
  • mathematical modelling
  • control strategies

Data availability statement

Data are available in a public, open access repository. All the code and results are freely available at the url https://crowdfightcovid19.github.io/req-550-Syria/, with the release used in the article permanently stored in Zenodo at the url https://doi.org/10.5281/zenodo.5148880

http://creativecommons.org/licenses/by-nc/4.0/

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Data availability statement

Data are available in a public, open access repository. All the code and results are freely available at the url https://crowdfightcovid19.github.io/req-550-Syria/, with the release used in the article permanently stored in Zenodo at the url https://doi.org/10.5281/zenodo.5148880

View Full Text

Supplementary materials

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

Footnotes

  • Handling editor Seye Abimbola

  • Twitter @J_D_Klein, @ecam85

  • JV and EC-F contributed equally.

  • Contributors All authors contributed to the conceptualisation. Design of the methodology: APG, EC-F, JV, JDK and CS. Formal analysis: APG, EC-F and JDK. Code development APG, EC-F and JDK. Conducted research: APG, EC-F, JV and JDK. Validate results: APG, EC-F, JDK, JV and CS. Contributed resources: APG, CS, EC-F, JDK and JV. Data curation: APG, JDK and EC-F. Visualisation: APG, EC-F, JDK and JV. Writing (original draft) APG, EC-F, and JDK. All authors contributed to the final version of the manuscript, and APG supervised the research.

  • Funding ECF's research is supported by Wellcome Trust grant 204833/Z/16/Z. APG research is supported by the Simons Collaboration: Principles of Microbial Ecosystems (PriME), award number 542381.

  • Disclaimer These organisations had no role in study design, data collection, data analysis, data interpretation, or writing of the article.

  • Competing interests APG is a Board Member of crowdfight COVID19, an initiative from the scientific community to put all available resources at service of the fight against COVID-19. CS (coauthor) is a Board Member of the Pax Syriana Foundation, a non-profit organisation set up for social and philanthropic purposes including promoting and providing support and assistance to civilian aid projects in the fields of education, health,emergency assistance, psychological assistance and humanitarian aid for people affected by wars or humanitarian crises.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.