Introduction
The health systems resilience supplement in the BMJ Global Health 2019 explored different perspectives on how to build and sustain resilient health systems in the context of multiple sector needs.1 Since then, the health landscape has evolved, as a result of the COVID-19 pandemic, but also the increasing country demand for initiatives and measurement approaches for performance of health systems, in the context of the primary healthcare revitalisation agenda. Drawing from available evidence, this article concludes the supplement by proposing an approach for measuring the functionality of health systems needed to address current health needs and facilitate movement towards health goals, specifically universal health coverage (UHC).
Understanding health systems has been central to the health agenda over the past 20 years. The 2000 WHO World Health Report initiated conceptual work around describing health systems, proposing health system boundaries and cross-country comparisons.2 Lessons from this process led to the elaboration of the health systems building blocks in 2007 as a means to define and characterise health systems, together with their linkages to health goals and objectives.3 This approach has been used to assess health systems, though this has largely been in high-income countries,4–7 with fewer such initiatives in the developing world.8–11 Additionally, the uptake and use of results from these assessments by decision makers and their impact on system development has been limited.12 13
The building blocks conceptualisation however only tells part of the story of what a health system entails. As a result, further conceptual exploration has continued, specifically on how to incorporate the observed complexities of the health system, their structure and how they produce results.14 15 Sheikh et al16 proposed a conceptualisation that incorporates the role of software elements and the context in which a system operates, as important in describing what a health system entails. This conceptualisation highlights the need to focus on three sets of elements in a health system: the hardware: corresponding to the tangible (staff, infrastructure and medicines) and intangible systems and processes; the discreet elements: software corresponding to the intangible inter-related elements such as relationships, values and cultures; and the context: corresponding to the environment within which the system operates at a given place and time. The COVID-19 pandemic has, among other things, highlighted the importance of the contextual environment as an influence on health system functionality. Inhibitive social, environmental, economic and political environments have been shown to hinder the availability, functioning or use of the health system hardware and to influence the expression of the software. Figure 1 illustrates these different elements important in understanding a health system.
An effective understanding of the functioning of a health system entails appreciation of the nature, depth and interactions among these complex and dynamic elements over time. The complex and adaptive characteristics of these elements and their interactions makes such an assessment complex and multifaceted. There are multiple correct ways to mix, match and interact the elements of a system to produce the desired outcomes. For instance, improving effective pentavalent vaccination coverage can be achieved by investing in different combinations of better staffing, expansion of infrastructure, expansion of service delivery processes, better management of vaccine logistics, among others. Singling out one intervention from these options will usually not lead to the desired result, as its effects may be undone by gaps in other elements. Multivariate analyses that explore different ways to invest in the system would thus be more appropriate. Despite the large data requirements for such an exercise, such an analysis will lead to multiple appropriate ways of mixing the elements to produce desired outcomes.
The difficulty of determining system functionality in a useful manner should not diminish its importance for decision making.17 In this paper, we present an approach for understanding the functionality of health systems that provide actionable information to decision makers.
Conceptual approach
Our conceptualisation of functionality focuses on how well a given health system is designed to deliver on expected results for the population. Instead of determining the state and interactions of the different elements constructing the system, we instead focus on understanding the capacities that a functional system needs to exhibit, irrespective of the investments and their interactions. By determining and monitoring these capacities, a decision maker is able to identify the appropriate mix and inter-relations of the system elements that will be optimal for improving functionality.
From a logical perspective, these capacities are viewed as the outputs of the investments made, at the input and process level, and can define attainment of desired outcomes. Though they already exist in literature, they have not been categorised as outputs. Originally, when the health system building blocks were introduced, three intermediate goals of a system were suggested: access to care including community engagement, quality of care, and coverage of services.18 We however view the goal of increased coverage as an outcome, arising from having access and quality capacities. Thus, when individuals, households and communities feel the need for and have access to quality services, then they will use these services, leading to increased coverage.19 Indeed, access and quality have been recognised as key capacities of a well-performing health system by many in academic discourse and policy spheres—access being concerned with the system’s capacity to overcome barriers to services, while quality of care is the process with which care is provided. In addition to these two capacities, the level of effective demand for essential services by a population is another potential capacity. The ongoing discourse on Primary Health Care (PHC) revitalisation demonstrates this, as it requires systems to put the needs and demands of people at the centre of their focus-shifting away from politically determined priorities.20–22 We therefore have identified three capacities important for determining the functionality of a health system: access to, quality of and demand for essential services. However, the capacity to sustain provision of these essential services is advocated for as an additional core capacity of a health system.23 24 The constant shocks health systems are subject to has brought the issue of service continuity to the fore.25 For example, 96 infectious disease outbreaks were documented in the region in 2018 alone,26 and the 2014 Ebola virus disease outbreak in West Africa and the COVID-19 pandemic have all highlighted the devastating effects of shocks on health systems’ ability to deliver essential services.27 The capacity to be resilient to external shocks, ensuring populations have access to quality services they have demanded, is therefore important for optimal functionality of any system.
We therefore use, as a working definition, these four capacities as the basis of a functional health system that can deliver on its health outcomes. Irrespective of the unique way health systems are structured in a given country, they should aim to improve these four capacities, in order to place them on a path to achieving desired outcomes.28 A functional health system in this context is conceptualised as one that maximises the attainment of UHC in a country, but also contributes to better coverage of other health-related targets and health security. The functional health system contributes, together with interventions from other sectors, to the desired coverage of health-related Sustainable Development Goal (SDG) targets and health security. Subsequently, the realisation of desired coverage for UHC, health security and other health-related outcomes will place countries on the path to good health and well-being in an effective, efficient and equitable manner. These linkages are illustrated in figure 2.
This study aims to derive a value for each of the four capacities in each country of the WHO African Region as a reflection of its status. This would provide guidance on which capacities a decision maker needs to focus on—the lower the value, the higher the need to focus on it. For instance, a value showing low access to essential services compared with resilience points decision makers to the need to prioritise efforts for improving access. We opted to construct an index value for each capacity of health system functionality. This approach is widespread in global development, including in emergency preparedness and response,29 health security30 and essential health service coverage.19 It provides a practical way to demonstrate how the capacities of functionality compare to each other in a country and across peer countries.
We recognise the complex set of issues hidden behind each of the four capacities that would require a wide range of indicators to unpack. As such, we deconstruct each capacity into vital signs, representing a group of subcapacities that, taken together, constitute the overall capacities. Use of vital signs allows a more targeted group of indicators to be selected and monitored and also provides more granular information on where a country needs to focus within each capacity. The proposed vital signs are those used in the WHO Africa Regional Framework for health systems development towards attainment of UHC, following a 2-year (2016–2018) process of expert consultations involving the 47 countries of the region.31 32 Access to essential services comprises three vital signs: physical access, financial access and sociocultural access; quality of care comprises three vital signs: user experiences, patient safety and effectiveness of care. Demand for essential services comprises two vital signs: individual healthy actions and health-seeking behaviours. Finally, resilience comprises two vital signs: specific resilience (emergency preparedness and response capacity), and the non-specific resilience (inherent capacity of the health system); these are defined in more detail in a separate publication.33 34 The index for each capacity is computed based on the scores for the vital signs that constitute it.
We present the approach to test these capacities, as measures of system functionality, and the emerging results for the 47 countries of the WHO African Region.