Discussion
This study examined full childhood immunisation gap between rural and urban populace in SSA. The study revealed variation in full immunisation in favour of urban children. Most children of higher birth order were in rural locations. No child was fully immunised in Zimbabwe and this may be aligned with the immunisation funding gap in the country.19 The over-reliance on donor partners needs to be reconsidered in order to ensure that most children, if not all, are fully immunised. Further, a number of contexual factors may also account for this finding from Zimbabwe. For instance, the freezing of posts within the health sector of Zimbabwe has adversely affected management of Expanded Programme on Immunisation (EPI).19 Primary Care Nurses who operate the health centres in rural locations are inadequate, possess limited skills and knowledge in EPI, and receive little payments which do not motivate them enough.19 Besides, geographical access to health centres is a challenge to some women as some of them walk 30km to the nearest health facility. Intermittent shortage of essential medicines has also been reported as well as hesitancy and refusal by women.19 20
Since most of these 23 countries have health insurance schemes that are propoor and absorb immunisation cost,21–24 it was anticipated that full immunisation will be generally high across the countries. Yet, the wide variation in full immunisation status is suggestive that context-specific factors sometimes transcend the ‘cost component’. In Namibia, for instance, where most children were fully immunised (79.9%), evidence indicates that even mothers in rural locations are knowleageable about the implications of missed immunisation on their children and are willing to access vaccines for their children amidst transportation cost and other barriers.25 Other countries with high proportion of fully immunised children such as Burundi benefit consistently from central government’s commitment and funding from external bodies such as the GAVI Alliance and the Measles and Rubella Initiative.26 These context-specific variations must, therefore, be appreciated by governments of sub-Saharan African countries and private entities aiming to improve full immunisation coverage in SSA.
The study revealed that factors contributing to this gap were maternal factors such as age, wealth quintile, occupation, distance to health facility and health insurance subscription. Birth order, however, was a child factor that made significant contribution towards the variation in full immunisation. The observed variation is not unexpected in light of the high concentration of health facilites and health personnel in urban locations across SSA. For instance, in the case of Sierra Leone, over 70% of surgeons are concetrated in the capital of the country, Freetown, and between 2005 and 2011, the doctor–patient ratio for the sectors hosting the capital rose from 0.07 to 0.12 per 1000 population. Within the same period, an increase from 0.03o to 0.05 occurred in the rural locations (eg, Koinadugu) per 1000 population.27 Analogous observation was made for the patient–nurse ratio.28 Similarly in Mali, 55% of healthcare providers operate within its capital of Bamako while the remaining 45% cater for the health needs of all persons outside the captial.29
Literature indicates that rural residents increasingly have significantly lower utilisation of public health services across several low-income and middle-income countries.30 31 Ability of sub-Saharan African countries to mitigate this deep-seated rural–urban disparity may certainly address the current disparity and thereby enhance the prospects of SSA to achieve the 3.2 SDG target of plummeting under-five mortality to at worst 25 per 1000 live births, respectively.5 A promising strategy in achieving this may be marshalling resources to knit childhood immunisation services with the primary healthcare concept in order for rural residents to access immunisation with the least setbacks such as covering long non-motorable distances and associated costs. This could motivate rural residents to ensure that their children obtain all the full immunisation doses within the recommended time frame.
Birth order of 6 or higher appeared to intensify the disparity in full immunisation status. This observation coincides with evidence from a recent study from Cameroon where through multinomial probit model, authors noticed that birth order has a negative and highly significant effect on full and timely childhood immunisation.32 Maternal experience and information received by the women during antenatal care visits of their pervious births could partly account for this observation.33 While first time mothers are less confident, and perceive themselves as requiring much support, a woman with multiple births may be less concerned about childhood ailments that have been exhibited by her child in the past.34 Maternal health workforce of SSA may be able to neutralise this disparity by acknowledging that anxieties and maternal healthcare utilisation levels vary by parity. Among the numerous strategies to improve the situation include targeting and educating multiparous women to appreciate that all children who miss any dose of immunisation stand a chance of ill health conditions. This may serve as a cue or prompt for them to seek the full immunisation for all their children.
Full immunisation status was aligned with richest wealth status. Even in countries where health insurance and free maternal healthcare exist like Ghana,35 36 women incur out of pocket expenses to cover transportation, laboratory and other services. Consequently, richest women have some leverage over poorest women.37 Moreover, wealth is a pathway to empowerment38 and it is well established in the literature that once a woman is empowered, it is more probable that she will use maternal healthcare.39 40 A poor woman may know and acknowledge the essences to get her child immunised in full, but her passion may remain a mirage if the requisite financial capacity is non-existent.
Distance to health facility was a significant indicator for disparity in full immunisation. After birth, a woman may require a substantial amount of time to recover and this period varies subject to a number of factors. For instance, a woman who underwent a caesarean section may require more time than a woman who had a normal vaginal birth.41 Owing to these factors, covering a long distance to immunise one’s child may be difficult for most women if not impossible. Distance has been noted as a cardinal determiner of maternal healthcare utilisation and in the perspective of Thaddeus, Maine,42 it is the second leading delay leading to maternal and newborn ill health and deaths in low-income and middle-income countries as espoused in their three delays model.
Strengths and limitations
Findings from the study are supported by large datasets covering 23 countries in SSA. The data were gathered following a common internationally acceptable methodological procedure. Due to the representative nature of the survey, the findings are representative of included countries and generalisable to women of reproductive age. In spite of these strengths, the survey is cross-sectional in nature and as such causal inference cannot be made. Also, the sample size is generally not large for some of the countries and may allow for a wider CI for the prevalence of full immunisation.