Discussion
This paper describes the evolution of our RFP programme to increase access to essential CVD medications for patients across different levels of the public sector healthcare system in western Kenya. The RFP models evolved alongside the Kenya MOH’s and the AMPATH CDM’s efforts to decentralise and expand quality and affordable CVD care to all patients within the public sector in western Kenya, particularly in remote geographical regions where CVD care and medications had never been delivered before. Our experience with the various RFP models illustrates that by staying adaptable, nimble and contextualised to each of our patient populations and the environment in which the RFP was being implemented, we were able to ensure medication availability for different levels of care and care needs.
The successful scalability of each of our RFP model in the appropriate setting depended on three key components which can be summarised as follows: (1) our ability to define pharmaceutical gaps for CVD care by focusing on the patients’ needs, (2) our priority to create local adoption mechanisms by establishing governance and engaging key stakeholders early in the process and (3) our efforts to create support systems and ensure sustainability by developing affordable patient copays, waivers and accountability mechanisms through inventory, financial and accounting systems. In addition, all revenues remained within our funding pool to sustain and expand more RFPs to other geographical locations to support patients. This would not have been possible without predefined accountability mechanisms such as the early establishment of governance and memoranda of understanding with key stakeholders, scheduled medicine inventory reports as well as financial and accounting reports. These scale-up strategies are similar to what have been described in previous literature and frameworks.27 From a sustainability standpoint, all three RFP models have made tremendous progress towards self-sustainability over the past decade, as demonstrated through the expansion of the model from 3 pilot sites to 72 health facilities supported by the RFP programme; the revenue recovered from drugs sold to maintain our current operation and continuous expansion; and the cost-sharing agreements between the Ministry of Health, the local health facilities, and AMPATH/RFP.
We presented the three RFP models as distinct and independent of each other; however, there is considerable overlap in the infrastructure on which each model relies. It is worth noting that the implementation of the original community-managed RFP model (ie, Model 1) was essentially a prerequisite for the development of alternative RFP models (ie, models 2 and 3) in the following years. In addition, by strategically leveraging a network of RFPs that we have built across the entire health system, our programme has the unique advantage to conduct coordinated redistribution of medication stocks between RFPs during the events of unplanned stock-outs or overstocks. Our ability to adapt to urgent supply chain issues such as these ensures rational medication allocation, adequate medications and other supplies to manage patients from the healthcare providers’ standpoint, and consistent access to CVD medications from the patients’ perspective. The lesson that we have learnt from implementing three different RFP models over the past 10 years has been that each model has its own advantages and disadvantages, and we must continue to stay nimble and modify as needed to determine which model might work best for the setting in which we are operating.
Through our network of RFPs, we were able to consistently and adequately supply CVD medications to meet the demand of our patients. In the year of 2018 alone, we supplied close to 6 million medication units to patients who would otherwise not have had access to affordable CVD medications. This quantity of medications is equivalent to supplying approximately 16 000 patients at least one medication unit per day for the entire year. Critical to being able to accomplish this was the utilisation of core supply chain management strategies including pull strategies (ie, medications provided are driven by our patients’ demand) and push strategies (ie, ability to forecast demand based on an understanding of local needs). As a result, we have been able to increase availability of generic CVD medications from the historical 30% or less to 90% or higher across all levels of the health system.
We explicitly described the programme’s operational costs in detail, per RFP and specific to each model. By doing so, our goal was to widely disseminate useful and practical information to other programmes around the world that may be looking into replicating this innovative supply chain model. Furthermore, this cost data profile serves as a benchmark for future comparison for quality improvement within our own programme as well as for other similar supply chain programmes in similar LMIC settings. Finally, these cost data can be helpful in providing local government with cost information to better invest and support an adequate government-led supply chain system. We recognise, however, that these programmatic cost data do not necessarily reflect affordability from the patient’s perspective. More economic analyses will be required to better understand patient-experienced costs. It is notable that, in Kenya (as in other LMICs), there has been a deliberate move towards universal healthcare,22 including a benefits package that includes outpatient chronic disease medications, which represents the key pillar to offset the medication cost realities that are a key hindrance to adherence in low-resource settings.
Finally, our experiences with RFPs have highlighted other persistent barriers that need to be addressed, such as transportation costs, opportunity cost of missed work and distance from health facilities. Building on the foundation of our RFPs, we are currently testing an innovative model of CVD medication refills whereby trained peers with hypertension serve as drug delivery agents. In addition to overcoming the above patient barriers, the trained peers can provide psychosocial support, perform simple screening for medication adherence, elicit patient-reported adverse drug effects and health-seeking behaviours specific to chronic asymptomatic CVD, all of which can be immediately relayed to clinicians for appropriate action.28 Our existing RFPs can be leveraged to test new supply chain models to improve access from both the supply and demand side for CVD medicines.2
Limitations
We acknowledge several key limitations to consider. First, we were not able to analyse the medicine availability profile for Model 3 RFPs due to the lack of consistent reports from these sites. However, because these RFPs received their medication supplies from nearby Model 1 or Model 2 RFPs, we can extrapolate the assumption that Model 3 availability was similar to that seen in Model 1 and 2 (approximately 90% or above). Another key limitation is that discrete patient-specific data could not be analysed to show more detailed trends in terms of number of patient visits, patient-specific medication refills, adherence patterns and respective clinical outcomes within the different models. While clinical outcomes could not be described in this paper, AMPATH has a large body of previously published papers describing the clinical effectiveness of the overarching CDM care model, a central component of which includes the RFP approach to ensuring medication availability.13 29–31 Last, our assessment was done from the perspective of the patient and their needs. While it is possible that introducing a backup pharmacy system may have unintended negative consequences on the impetus for improving the MOH pharmacies, it is our hope that this analysis provides the evidence to support the ongoing advocacy and adoption of RFP supply chain principles to ultimately improve the MOH supply chain systems.