Article Text

Validation analysis of Global Health Security Index (GHSI) scores 2019
  1. Matthew J Boyd1,
  2. Nick Wilson2,
  3. Cassidy Nelson3
  1. 1Research Director, Adapt Research Ltd, Reefton, New Zealand
  2. 2Public Health, University of Otago, Wellington, New Zealand
  3. 3Future of Humanity Institute, University of Oxford, Oxford, United Kingdom
  1. Correspondence to Dr Matthew J Boyd; mattjamesboyd{at}gmail.com

Abstract

Introduction The COVID-19 pandemic powerfully demonstrates the consequences of biothreats. Countries will want to know how to better prepare for future events. The Global Health Security Index (GHSI) is a broad, independent assessment of 195 countries’ preparedness for biothreats that may aid this endeavour. However, to be useful, the GHSI’s external validity must be demonstrated. We aimed to validate the GHSI against a range of external metrics to assess how it could be utilised by countries.

Methods Global aggregate communicable disease outcomes were correlated with GHSI scores and linear regression models were examined to determine associations while controlling for a number of global macroindices. GHSI scores for countries previously exposed to severe acute respiratory syndrome (SARS), Middle East respiratory syndrome and Ebola and recipients of US Global Health Security Agenda (GHSA) investment were compared with matched control countries. Possible content omissions in light of the progressing COVID-19 pandemic were assessed.

Results GHSI scores for countries had strong criterion validity against the Joint External Evaluation ReadyScore (rho=0.82, p<0.0001), and moderate external validity against deaths from communicable diseases (−0.56, p<0.0001). GHSI scores were associated with reduced deaths from communicable diseases (F(3, 172)=22.75, p<0.0001). The proportion of deaths from communicable diseases decreased 4.8% per 10-point rise in GHSI. Recipient countries of the GHSA (n=31) and SARS-affected countries (n=26), had GHSI scores 6.0 (p=0.0011) and 8.2 (p=0.0010) points higher than matched controls, respectively. Biosecurity and biosafety appear weak globally including in high-income countries, and health systems, particularly in Africa, are not prepared. Notably, the GHSI does not account for all factors important for health security.

Conclusion The GHSI shows promise as a valid tool to guide action on biosafety, biosecurity and systems preparedness. However, countries need to look beyond existing metrics to other factors moderating the impact of future pandemics and other biothreats. Consideration of anthropogenic and large catastrophic scenarios is also needed.

  • health policy
  • public health
  • prevention strategies
  • control strategies
  • SARS
http://creativecommons.org/licenses/by-nc/4.0/

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

View Full Text

Statistics from Altmetric.com

Supplementary materials

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

Footnotes

  • Handling editor Seye Abimbola

  • Twitter @matt_adapt

  • Contributors CN conceived the project, contributed to interpreting the data and writing the manuscript and provided important intellectual content. MJB performed literature reviews, compiled the data, analysed the data and wrote the manuscript. NW advised on the methodology, contributed to interpreting the data and writing the manuscript and provided important intellectual content.

  • Funding This study was funded by the Strategic Priorities Fund and the Open Philanthropy Project.

  • Disclaimer These funders had no input into the study design, collection, analysis, or interpretation of data, written outputs, or the decision to submit this paper for publication.

  • Competing interests None declared.

  • Patient consent for publication Not required.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data availability statement All data analysed in this study are publicly available and links to the data sources are presented in online supplemental table S1.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.