Discussion
Mortality
Children aged 5–14 years with pneumonia accounted for 11.7% of all medical admissions to the study hospitals for children aged >5 and<15 years. Overall, we found that mortality was high (7.9%) in this group. There were more admissions and deaths in children aged 5–9 years, but there was higher case fatality among those aged 10–14 years (14.1%). Pneumonia case fatality rates (CFRs) have not been reported before in these age groups and, perhaps surprisingly they are similar to those reported in hospital-based pneumonia studies of children under 5 years: studies from sub-Saharan Africa report rates ranging from 5% to 10.4%.18 21–25 These include pneumonia mortality rates from studies within the CIN: for children aged between 2 and 59 months one study reported CFR of 5.9%,21 and another reported 5%, the latter excluded children with severe acute malnutrition, meningitis and HIV.18
These higher than expected CFRs could be explained by several factors: (1) late presentation to hospital,26 27 (2) different admission thresholds or inadequate guidance for primary care workers on what constitutes severe illness in this age group. This may contribute to late presentation or could result in only the highest-risk children being admitted—there were low absolute number of children admitted (especially in those aged 10–14 years) if we consider that the general population cohort is the same size as for under 5s, (3) residual pneumococcal disease—pneumococcal vaccination was only introduced in Kenya in 2011, therefore the majority of children in our study would not have been immunised making them more susceptible to invasive disease,28 although they are likely to have benefited from herd immunity,29 (4) a wider range of pneumonia pathogens that are not susceptible to commonly used antibiotics and (5) a high proportion of children with comorbidities such as HIV or underlying chronic illness (including some that may not be detected due to weak diagnostic capacity).
Clinical risk factors
The characteristics associated with mortality in our study: pallor (any), central cyanosis, reduced consciousness, tachypnoea, inability to eat or drink, HIV and severe malnutrition are broadly similar to those described in studies for children under 5 years. Pallor stood out from other individual characteristics in the strength of its association with death. It is a widely accepted clinical tool used to identify children with moderate and severe anaemia in resource-limited settings (although the majority of the data supporting its use are derived from studies in under 5s).30–33 This association with mortality has previously been shown for children under 5 years but never before in older children.18 22 34 35 Children in our cohort may be anaemic for a number of reasons: haemolysis due to malaria, 30 atypical infection or sepsis; myelosuppression related to malaria and co-infection with non-typhoidal salmonellae36; nutritional deficiency or other comorbidities such as HIV, sickle cell and malignancy. However, the relationship between anaemia, pneumonia and high mortality is less clear. Does the presence of anaemia simply represent children with comorbidities or those living in extreme poverty or neglect—children for whom we might expect worse health outcomes? In our analysis, socioeconomic factors were not accounted for. Children may also have been referred to these higher-level facilities specifically for blood transfusion, therefore anaemic children may be over-represented in our study cohort. However, the fact that even mild forms of clinical pallor remained associated with death counters this. Alternatively, there may be a specific physiological relationship between anaemia and respiratory compromise that affects clinical outcome. For example, in the context of pneumonia, anaemia might compound respiratory compromise further by reducing the oxygen carrying capacity of red blood cells.37 Finally, severe anaemia itself is a well-recognised cause of respiratory distress, therefore it is possible that children in our study were misdiagnosed with pneumonia. Again, the association of mild/moderate anaemia with death counters this. It is likely that the role of anaemia is complex and multifactorial and this relationship warrants further study.
Our initial analysis shows that both individual and simple combinations of clinical signs do not have good sensitivity or specificity in predicting clinical outcome among hospitalised over 5s with pneumonia (online supplementary table 1). For example, the combination of clinical characteristics used to define severe pneumonia by WHO in the under 5s was poor in discriminating those at risk of death (sensitivity: 0.56, specificity: 0.68 and AUC: 0.62). Any pallor (AUC 0.69), or combinations of pallor and/or reduced consciousness (AUC 0.73) or pallor and/or reduced consciousness and/or central cyanosis (AUC 0.74) performed better than having ‘severe pneumonia’. However, in our data mortality was high in children without signs of severe disease (5.1%), severe pneumonia was observed more frequently in children aged 5–9 years—the group with lower mortality—and we have no data on the clinical signs among similarly aged outpatient children presenting with possible pneumonia. Further work is therefore needed to explore and then test which clinical signs may be useful in identifying high-risk children among those presenting with possible pneumonia at ages 5–14 years.
Human immunodeficiency virus
HIV tests were ordered in 1027 (56.1%) children. The proportion with a confirmed diagnosis was high, particularly in those >9 where 16.4% were HIV positive. This is much higher than population prevalence rates reported in Kenya, which are estimated at 0.9% for children aged 18 months to 14 years.38 The high rates we observed could be because pneumonia disproportionately affects patients with HIV.39 40 However, it is also plausible that population prevalence of HIV is higher in this older population—they are less likely to have benefited from prevention of mother-to-child transmission programmes (first officially launched in Kenya in 2002), and may have some risk of HIV acquisition through sexual transmission. In our cohort HIV was associated with death, which is consistent with other studies.41 Factors that might contribute to poor outcome in these HIV-infected children include complex sociocultural issues around stigma and disclosure and access to and retention in care. Unfortunately, our routine dataset does not allow us to determine whether these children are enrolled in HIV care and treatment programmes nor provide information on markers of immune function such as CD4 count and viral load.
Treatment
In our study, the majority (85%) of children who were prescribed an antibiotic on admission were prescribed at least one of the first-line antibiotics recommended by the current WHO pneumonia case management guidelines. This may indicate that clinicians treat children over 5 years as they do those under 5 years (who represent the majority of pneumonia cases that they see), or that clinicians do reference the under 5 guidelines when treating older children. These prescribing practices are also likely to be reinforced by factors such as the low cost and availability of these drugs, clinician experience and familiarity using them,42 and regular audit and feedback against national protocols (for under 5s).12 However, these treatments do not adequately target organisms which can cause complicated pneumonia such as Staphylococcus aureus or atypical pathogens such as Mycoplasma pneumoniae. There is some evidence to suggest that over 5s are more likely to present with atypical infections, these studies are from high-income settings with small sample sizes.7
The lack of robust evidence on pneumonia aetiology in this age group means that best practice with regard to antibiotic treatment really is unknown. The recently completed Pneumonia Aetiology Research for Child Health study sought to refresh understanding of paediatric pneumonia aetiology in LMICs, but focused exclusively on under 5s.43 Unfortunately, we were unable to confirm aetiology in our study due to the limited diagnostic capacity of the study hospitals.8 There is an urgent need for carefully designed studies on the effectiveness of alternative antibiotics, as well as other supportive care regimens such as oxygen and blood transfusion,44 45 to guide the development of empirical treatment protocols for pneumonia in older children.
Strengths and limitations
We collected data from routine clinical practice, representing real-life scenarios rather than a controlled research environment, and our large sample size was taken from multiple hospitals across Kenya. As a result, our data are the most representative to date of children aged 5–14 years admitted to district hospitals in sub-Saharan Africa. To our knowledge, this is the first study that examines specifically for risk factors in over 5s in a resource-poor setting. We examined a complete 4-year period to reduce seasonal bias—an important consideration in the context of respiratory infections.46
Our analysis is based on the documentation of clinical findings with retrospective data entry. This exposes the study to potential bias due to missing data—either due to gaps in medical documentation or misplaced hospital records. Considerable effort was taken to mitigate this and ensure comprehensive sampling of high-quality data.9 This included immediate data entry at the point of discharge, regular audit of clinical records against hospital admission registers, training and supervision of data clerks, standardised patient admission forms for clinicians with regular feedback on their completeness and dissemination of standard clinical guidelines to healthcare workers within the study hospitals. We also applied multiple imputation to address missing data and maximise the use of available data. Our CIN provides a suitable platform for a future prospective study examining the findings highlighted in this analysis while minimising the limitations described above.
The observational nature of this study and use of data collected during routine care also presents limitations: the interpretation of clinical signs is likely to vary because characteristics are identified and recorded by a variety of junior clinicians.47 Although, arguably, this may also increase the generalisability of our findings. There is potential for misdiagnosis and misclassification because of limited access to diagnostic equipment. For example, the lack of pulse oximetry data in the study may have led to an underestimation of the utility of WHO severity classification. We were unable to account for the effect of antibiotic treatment on outcome because we only had information on prescriptions on admission which does not reflect what was actually administered, nor any changes to treatment made during admission. Similarly, we were unable to reliably assess the impact of quality of care and other unobserved factors that might influence management decisions, such as the clinician’s gut feeling influencing admission decisions.48
Finally, we did not have data on children managed as outpatients or in the community. This group is likely to represent the majority of over 5s with pneumonia and being able to compare the two groups would further elucidate risk factors for poor outcome. Future work should also focus on broader risk factors for death that have been highlighted in previous studies (for children under 5 years), these include low maternal education and other socioeconomic factors such as indoor pollution.41