Discussion
We explored the prevalence of and covariates associated with FN-RDT results in large-scale malaria surveys in sub-Saharan Africa. We found that FN-RDT results were common in these national surveys, despite high-quality microscopy and RDT implementation. The prevalence of FN-RDTs was spatially heterogeneous, occurring most frequently in regions of low prevalence and in urban areas. We leveraged data from DHS/MIS field surveys and the WHO Product Testing Programme, which provide ongoing, high-quality assessments of malaria epidemiology and RDT performance, respectively. Our analysis provides insight into the factors associated with RDT performance in the field and confirms that FN-RDT results are not predicted by product testing alone. These findings underscore the need for careful interpretation of RDT-based prevalence estimates and ongoing efforts to improve the performance of malaria diagnostics for community surveillance.
When considered in aggregate, the effect of FN-RDT results (RDT negative, microscopy positive) on prevalence estimates may be partly counterbalanced by RDT-positive, microscopy-negative results due to lingering PfHRP2 antigenaemia after parasite clearance.3 The generally higher prevalence of malaria by RDT compared with microscopy observed in the present analysis is consistent with this idea. However, our findings that FN-RDT results are more common (A) in the field than in product testing and (B) in urban and low-transmission settings are relevant to design of large malaria surveys. For example, programmes might consider validating at least a subset of RDT results using an alternative diagnostic methodology (eg, PCR or microscopy), especially in urban or low-transmission areas.
The association between FN-RDT results and malaria prevalence also has potential ramifications for the roll-out of next-generation malaria diagnostics, including more highly sensitive RDTs. We observed higher FN-RDT results in regions of low malaria prevalence, a finding supported by a recent analysis of DHS and MIS data from the Democratic Republic of the Congo, Uganda and Kenya that estimated malaria prevalence and evaluated RDT performance using a Bayesian framework.33 The study’s results for predicted prevalence and RDT diagnostic sensitivity had a similar association to those observed in our analysis, with the highest FN-RDT results in the nation with the lowest prevalence (Kenya). The most likely explanation for this association is the increased observation of infections with lower parasite densities in areas of lower malaria prevalence.22 34 Similarly, our finding that FN-RDT results were more prevalent in urban compared with rural areas may also be driven by lower parasite densities, as supported by evidence suggesting that individuals in urban areas present with lower parasite densities than those in rural areas at similar transmission intensities.35 These findings together suggest a potential niche for improved diagnostics (eg, PCR or high-sensitivity RDTs) in community surveys conducted in both lower malaria prevalence and urban settings. It is important to emphasise that these findings cannot be applied to case management, as FN-RDT results are expected to be less common in symptomatic individuals presenting with higher parasite densities.
Our rationale for using a transmission model was foremost to extend the observed results from MIS and DHS surveys, which sample from young children in discrete clusters and demographic groups, into estimates for the whole population. For example, the model predicts that individuals older than 5 years of age are likely to exhibit lower parasite densities due to increased exposure-acquired immunity. While our analysis of MIS and DHS results was limited to children younger than 5 years old, the model provided an opportunity to estimate FN-RDT results among older individuals. Due to their decreased parasite densities, infected individuals older than 5 years of age are less likely to have FN-RDT results in the model. Along these same lines, the transmission model assumes that individuals who are symptomatic will always be detected by microscopy due to the high parasite densities associated with clinical symptoms. Thus, the modelling exercise restricts our analysis to asymptomatic infections. Although the use of the transmission model allows us to estimate the infection and immunity status of the population at risk in the countries analysed, the assumptions in the model about the detectability of asymptomatic infections and the proportion of subpatent infections are simplified. For example, the model does not directly include within-host parasitaemia and, as such, the timing of intraerythrocytic stages is not explicitly modelled, which other models have included for more accurate estimations of the submicroscopic reservoir.36
While we observed differences in the proportion of FN-RDT results by brand, these differences in performance were not statistically significant. Ongoing WHO product testing confirms differences in RDT performance during standardised testing, and it is unsurprising that there was variation in performance by brand and lot in the field. RDT-specific differences are likely driven by multiple factors, including the stability in different storage conditions and the avidity of different monoclonal antibodies to common HRP2 epitopes in a specific geographical region, although an association between pfhrp2 and pfhrp3 gene structure and RDT detection was not observed in a prior study.37 In addition, the ease of detecting positive test bands has also been reported to be an issue, especially among RDT brands known to produce faint test bands.38 As per WHO recommendations, faint bands on RDTs should be interpreted as a positive malaria result39; however, some evidence suggests that these bands are sometimes too faded to be seen in poor lighting.38 This could be one explanation for the increase in FN-RDT results observed in urban areas, where RDT results may be more likely to be assessed indoors. In addition, previous studies have shown that these faint bands are observed more often when subjects have lower parasite densities.38 We also found that FN-RDT results were associated with younger age, a finding driven primarily by a high proportion of FN-RDT results in subjects younger than 1 year of age (online supplementary figure S1). There are several plausible explanations for this observation, including decreased parasite densities during infancy and/or maternal anti-HRP2 antibodies40; a phenomenon that has not been studied to our knowledge.
There are a number of limitations to our study. First, we assume that microscopy-positive and RDT-negative results reflect a true-positive infection. We chose this approach because rigorous quality control procedures are employed for microscopy in DHS and MIS studies. Poor specificity in microscopy can occur due to a number of reasons, including poor blood film preparation, poor quality reagents and variability in both operator training and workload.41 42 While these factors are impossible to mitigate completely during any field study, the microscopy protocols employed during DHS and MIS studies should minimise their impact. Confirmation by PCR would provide a more sensitive assessment of parasitaemia (although PCR itself is imperfect and results vary between laboratories),43 but this is not typically employed in national surveys due to cost. Alternatively, confirmation of RDT findings could be achieved by measuring antigen concentrations from dried blood spots, which would enable the sensitivity of the RDT to be assessed directly.6 Occurrences of microscopy-positive and RDT-negative infections that are, in fact, true-negative infections will impact the estimated FN-RDT results. As a result, the modelled estimates of the percentage of infections missed during community-based surveys most likely represent an upper estimate. However, our estimates are based on the assumption that an asymptomatic individual’s probability of detection by microscopy is dependent on the prevalence of malaria (online supplementary figure S2). Consequently, the occurrence of microscopy false-positive results would also result in an increase in the estimated malaria prevalence and skew the modelled estimates. The presence of microscopy-positive and RDT-negative infections that are true-negative infections is unlikely to fully explain the observed patterns in FN-RDT with respect to malaria prevalence. For example, in Benin, which had the highest proportion of FN-RDT results, an increase in FN-RDT results was still observed in lower transmission settings. While the presence of microscopy-positive and RDT-negative infections that are true-negative infections will impact the accuracy of our FN-RDT prevalence estimates, it does not fully explain the patterns observed in the data.
Second, because speciation data were unavailable, we were unable to delineate the impact of FN-RDT results by Plasmodium species. As such, a portion of the observed FN-RDT results in surveys that used P. falciparum-specific RDTs can be attributed to infection by non-falciparum species. However, the broadly similar proportion of FN-RDT results between surveys that used P. falciparum-specific PfHRP2-based RDTs versus combination PfHRP2 plus pan-species lactate dehydrogenase RDTs suggests the impact of non-falciparum species on our findings is small. We also observed consistent trends in the proportion of FN-RDT results when comparing across countries with different prevalences of non-falciparum species (online supplementary figure S4).
Third, we paired the RDTs employed during DHS and MIS surveys with WHO product testing data based on RDT expiration dates, available in the published lot testing reports, rather than specific lot numbers. While the PDS score is not intended to predict FN-RDT results, it allows for an estimate of RDT performance in the field based on the assumed distribution of parasite densities of infections detectable by microscopy. Analysis of qPCR parasite densities among microscopy-positive subjects enrolled in other cross-sectional studies suggests that the differences between the expected FN-RDT prevalence based on product testing and the observed FN-RDT prevalence in DHS/MIS surveys were not driven simply by parasite densities below the RDTs’ LOD. Fourth, we did not have data on differences in RDT storage conditions, the quality of operator use, or supervision across the DHS and MIS surveys. However, their protocols and rigorous training procedures suggest that RDTs were deployed using best practices. In addition, the survey year was not a risk factor for FN-RDT results, which provides some evidence that operator use was consistent throughout included studies.
Finally, we do not have data on the prevalence of pfhrp2/3 gene deletions in most of the countries. Although there is some correlation between the countries predicted to be at the highest risk for pfhrp2/3 gene deletions by recent modelling and those with the highest FN-RDT results,13 the contribution of pfhrp2/3 gene deletions to the FN-RDT results in our study cannot be determined definitively. We suspect that other factors are major drivers of the observed FN-RDT distribution. Indeed, FN-RDT results were common in Mozambique, where a recent study demonstrated that only 1.45% of parasites had pfhrp2/3 deletions.44 In addition, the insignificant impact of seasonality in the hierarchical model argues against a major role for pfhrp2/3 deletions in driving FN-RDT results in included studies, based on recent modelling suggesting that FN-RDT results due to pfhrp2/3 deletions are more common at the beginning of a transmission season when monoclonal infections are often more prevalent.45
The results presented here demonstrate that FN-RDT results are common in community malaria surveys throughout sub-Saharan Africa. Our findings confirm that RDT performance in field settings cannot be predicted by lot testing alone and indicate that FN-RDT results are more common in low-transmission and urban settings. To complement surveillance of RDT brand and lot performance, continued field effectiveness studies are required. Additionally, our findings underscore the need for thoughtful deployment of next-generation, highly sensitive RDTs and ongoing efforts to improve malaria diagnostics.