Quality improvement by the NeoTree
The qualitative feedback suggests the NeoTree could mitigate some major barriers to quality newborn care; for example, lack of nurse specialisation, lack of access to guidelines, poor training and frequent staff rotation (without choice) contributing to a general lack in confidence in handling newborns.
To our knowledge, the NeoTree is the only such intervention in development combining data collection, clinical decision support and education to improve quality of care for newborns. Decision-tree apps based on clinical algorithms have been trialled in Malawi for triage of sick children and in village clinics (D-tree International)24 and for disease-specific management of neonatal sepsis in Tanzania,25 but not for the assessment and care of newborns admitted to hospital.
Although the NeoTree was perceived by some to have delayed the provision of less emergent treatments such as antibiotics, this could reflect inadequate HCW understanding of the importance of emergency stabilisation before considering other treatments such as antibiotics. Arguably, 5–10 min of thorough assessment is necessary to improve quality of care overall and may improve efficiency, for example, by rationalising antibiotics and mitigating antibiotic overuse and resistance, a current major global challenge.26
The highest case fatality rates in the digital audit were for asphyxia and prematurity, consistent with other data sources.18 The potential beneficial effects of the NeoTree on prematurity and mild birth asphyxia are clear, for example, in guiding the management of respiratory complications. Benefits are less obvious for severe birth asphyxia and extreme prematurity as this would require greater resource from within the health facility itself and/or greater emphasis on prenatal and perinatal factors. The NeoTree is not yet configured to address maternal factors within the labour ward, but this is a focus for future work.
Data-driven quality improvement
There is a global call for prioritising immediate, meaningful data collection to measure newborn outcomes in low-income settings. The NeoTree allows accurate data collection by the HCWs themselves—thus allowing local and national investigation of newborn health, for example, the epidemiology of birth asphyxia. However, by going beyond data collection to provide bedside clinical decision support, education and training there is an immediate feedback loop to HCWs to encourage and ensure quality data entry. Replacing a paper-based admission process for a sick neonate with a touchscreen interface has emphasised patient safety, practical feasibility and clinical integration through multiple iterations (n=43 versions) towards a successful implementation strategy.
Generalisability
We have shown that NeoTree is usable in a busy district hospital with high admission to staff ratios. Our results are therefore generalisable to similar or better staffed facilities responding to concerns regarding lack of newborn training in these settings. The NeoTree is preconfigurable by a ward manager, according to equipment available (eg, CPAP) and skill mix in each facility and thus is generalisable to all levels of health facilities and adaptable within individual facilities as equipment and skill mix change. Our results demonstrate strong usability and acceptability among student-nurses, therefore are particularly generalisable to facilities where admissions are completed by student-nurses.
Strengths and limitations
The strengths of our study are severalfold. Our development strategy has used contemporary agile software and an editor platform which enabled iterative ‘build-measure-learn’ loops keeping the NeoTree in line with rapidly moving technology23 and allowing a truly integrated clinical and software design approach. We have upheld an important principle of mHealth: partnership and collaboration,23 through cocreation with HCWs, parents and guardians and collaboration with our clinical and digital partners including the Malawi MOH, working towards national QI priorities. Finally, we have taken a holistic integrational approach to QI in resource-poor settings including the recommended elements of systems thinking, stakeholders’ participation, accountability, evidence-based interventions and innovative evaluation.27
Limitations include that only four qualified nurses could attend the final FGD due to poor staff availability which may have affected the depth and richness of these data. The PQI score is not validated and does not adequately capture the WHO newborn quality of care initiatives; hence serves more for hypothesis generation than testing. The presence of the researcher in the clinical usability study may have biased NeoTree uptake and feedback.
Next steps
Future work includes ongoing software development, guided by behaviour change theory, including data transfer to local dash-boards and national systems. Clinical validation of the diagnostic algorithm for non-emergency newborn conditions (F2b, figure 2), and pilot testing of the resultant version, wherein the NeoTree completely replaces the paper admission form and a ‘NeoTree Ambassador’ provides technical support. Finally, we propose a large-scale clinical, cost-effectiveness and implementation evaluation of the NeoTree to reduce newborn case fatality rate.