Ethical considerations
Innovative biotechnologies, namely gene drive technology, which has been greatly enhanced by the CRISPR/Cas9 tool, require ethical analysis before implementation. These technologies modify life itself, at the individual and at the species level (acting at the germ line, and thus passing down all modifications from one generation to the next).
Ethical consideration of biotechnological developments should be conducted under the presupposition that ethics and sciences can and ought to work together for the good of individuals , for the well-being of societies, and for the protection of all forms of life and ecosystems. Ethics is not a barrier to science and should not limit scientific progress. On the other hand, the sciences are not ends in themselves and are not autonomous endeavours, standing apart from the consensual objectives of societies. On the contrary, while the sciences should continue to develop, discover and implement the best means for pursuing the goals of society, ethics should work at the societal level, helping to establish the best results for a fair and equal society. The decision to use CRISPR/Cas9 to fight malaria, or genome editing in general, does not belong solely to science, but also requires public engagement, especially from the African communities living in malaria-endemic areas. These communities suffer from chronic poverty and are particularly vulnerable to foreign economic interests, and having low levels of education, they lack the capacity for informed debate and free decision-making.
Ethical considerations of the use of CRISRP/Cas9 have been few. We here outline four major areas for ethical consideration regarding the use of CRISRP/Cas9 to fight malaria.
Scientific hazards
Sound science is the first ethical requirement for scientific research.
CRISPR/Cas9 has large range of applications and huge possibilities for life transformation, which will take decades to perfect. The correct use of this biotechnology requires careful forethought and tight control, which is far from being a reality.
Altering a gene can generate unpredictable and undesirable consequences in the modified species, as well as in other species, and give rise to new and unknown animal and human diseases.
Promotion of public health
The impact on human health is a major concern in the ethical evaluation of new biotechnologies. At this level, ethical analysis demands evaluation of the benefits and risks and that the former outweigh the latter.
The potential immediate benefits of CRISPR/Cas9 for public health are vast: it can be employed to fight malaria, but can also be used to combat in many other pathologies that cause suffering and death, namely genetic diseases.
However, there are considerable risks. Can science guarantee that incidental exposure to mosquitoes, apart from their bite, through inhalation or ingestion does not result in harm, that no novel genes will transfer to humans, and that there will no alterations in disease transmission or altered transmission of other diseases with unpredicted consequences? Is it possible to avoid all side effects through control strategies?
Regrettably, these and many other questions do not yet have an objective and accurate answer; therefore, gene editing should be introduced cautiously and accompanied by thorough scientific research.
Protection of biodiversity and the ecosystems
The impact on biodiversity and on ecosystems has to be considered when dealing with biotechnologies that interfere with biological entities. At this level, ethical analysis demands respect for all forms of life as valuable in themselves.6
Gene editing technologies could reduce biodiversity or damage ecosystems. Although scientists claim that the ecological risks from eradication by gene drive are less than the detrimental effects of conventional mosquito control, they also recognise that more research on risk assessment is needed. Conversely, it has been suggested that both genome editing technologies and gene drive can be used for conservation (e.g. by targeting invasive species), although this would conflict with notions of naturalness and the idea of ‘nature’, which is understood as what is independent of human purposes.
Human beings are an integral part of the biosphere, as reflected in the UNESCO Declaration on Bioethics and Human Rights. Under which criteria and how far do we have the right to modify biological entities? Is there a way to accurately predict the impact of the modification of or removal from the ecosystem of a single animal species? And would there be a way to control the negative effects?
The slippery slope threat
In the last 50 years, all new biotechnologies have been subjected to the slippery slope phenomena, that is, they were produced for a specific goal but were quickly used for other objectives,7 some good and some bad depending on their impact on personal well-being and on societal development.
The fight against malaria using CRISPR/Cas9 will unavoidably lead to its application to other insects, to other animals, in a growing generalisation of its use with unpredictable consequences. In addition, the free use of CRISPR/Cas9 in fighting animal-transmitted diseases will likely spread to other human diseases where it can also offer some hope. Furthermore, evidence shows that when new biotechnological resources are designed and applied to human beings for therapeutic reasons, which are good in themselves, they ended up being mostly used to fulfil individual and/or public desires, exchanging the original therapeutic telos for a social telos.8
In this predictable scenario, the diversity of possible uses for gene drive technology (namely the production of bioweapons) and their impacts are, indeed, unpredictable.