Where to from here?
For primary stroke prevention to be effective, the emphasis should be shifted from high-risk prevention to prevention at any level of CVD risk, with the focus on behavioural risk factors. It was recently suggested that motivating and empowering people to reduce their risk of having a stroke/CVD using increasingly used smartphone technologies would bridge the gap in the population-wide and high-risk prevention strategies and reduce stroke/CVD burden worldwide,5 ,55 even in developing countries such as Africa and India,61 where ownership of smartphones is already high and increasing. Evidence of the efficacy of smartphone technologies for management and prevention of CVD and other NCDs and risk factors is accumulating with promising results.44–46 ,62–64 Capitalising on the mobile information technology that motivates and empowers people throughout the world to reduce their risk of having a stroke/CVD represents a new paradigm in mass primary prevention,65 which we suggest calling ‘motivational population-wide strategy.’
An example of this strategy is the validated Stroke Riskometer app,55 ,66–68 endorsed not only by all major international organisations (World Stroke Organization, World Federation of Neurology, World Heart Federation and European Stroke Organisation) but also an increasing number of national stroke organisations, including China Stroke Association, Australian Stroke Foundation and the National Russian Organisation for the Fight Against Stroke. In 2014, the app was voted by senior American doctors as the number 1 app in Medical Conditions among 100 000 + health-related apps worldwide,69 and since then has been downloaded >100 000 times from over 100 countries.
The app not only empowers people to know their absolute risk (as many other CVD apps do)57 ,70 but also their relative risk of having a stroke within the next 5–10 years, thus motivating them to reduce their risk of stroke. For example, for an 82 kg, 170 cm, man aged 25 years, with a poor diet (<6 servings of fruits/vegetables a day), not physically active enough and with systolic BP of 127 mm Hg, the 5-year absolute risk of having a stroke is only 0.65%. However, this man's relative risk of having a stroke is 2.8, and this, we believe, would motivate him to know why his risk is increased and what he can do to reduce it. As 78% of adults free of CVD have two or more modifiable CVD risk factors such as BP, cholesterol, glucose, body mass index, smoking, physical activity or diet,71 and therefore will have a noticeably increased relative risk of stroke shown in the app arguably sufficient to motivate them to reduce their risk, we believe that the effectiveness of the app in preventing stroke and other major NCDs that share common risk factors with stroke may be close to that of the mass strategy (figure 1).65
Figure 1Comparison of conventional population-based, high-risk and motivational population-wide cardiovascular disease (CVD) prevention strategies. Modified from WHO ‘Cardiovascular disease prevention and control. Translating evidence into action’.72 (A) Population-based prevention strategy aimed at shifting the distribution of risk factors and associated CVD risk in the whole population towards optimal distribution of CVD risk (shadowed in grey area shows a theoretically possible proportion of the population that could benefit from this strategy); (B) high-risk prevention strategy aimed at treating the individuals at high absolute risk of CVD (shadowed in grey area shows a theoretically possible proportion of the population that could benefit from this strategy; with the 20% cut-off for 10-year high CVD risk, only about 13% of the population could benefit from this strategy);73 (C) motivational population-wide CVD prevention strategy aimed at managing CVD risk factors in the individuals at the high relative risk of CVD (shadowed in grey area shows a theoretically possible proportion of the population that could benefit from this strategy; with two CVD risk factors, almost 80% of the population could benefit from this strategy).71
Apart from these risk factors, the app includes additional risk factors such as alcohol intake, stress, family history of CVD and diabetes; therefore, the proportion of adults free from CVD disease who have two or more CVD risk factors included in the app is likely to be noticeably >78%. The app also educates users about stroke warning signs (extended version of the Face-Arm-Speech-Time (F.A.S.T.)), their individual and overall risk factors and how to control them by using evidence-based and internationally recognised guidelines.
Unlike some costs associated with the implementation of population-wide primary prevention strategies and significant costs associated with screening of the population for implementation of high-risk prevention strategies, an app-based primary prevention strategy carries virtually no cost and there are no counterproductive stakeholders that may influence the individual's decision to reduce their risk of having a disease. It carries no risk of adverse events and is basically a ‘nothing to lose’ strategy.
There is evidence that a combination of population-wide and individual approach integrated into the primary care for CVD prevention is effective in reducing CVD mortality and also reduces socioeconomic inequalities in CVD mortality.74 By taking advantage of population-wide and high-risk prevention strategies and at the same time addressing their current limitations, these mobile technologies could be incorporated into the hospital and community patient management systems (figure 2), thus providing an important (currently missing) interface between patients and healthcare providers.
Figure 2Integrating mobile technology with patient management systems.
In addition, the app provides a unique research tool for collecting much needed epidemiological data on stroke and other major NCDs across the globe, and the international app-based epidemiological RIBURST study (Reducing the International Burden of Stroke Using Mobile Technology)55 is already underway. The Stroke Riskometer app is currently being piloted in New Zealand in a randomised controlled trial called MARS (Mobile Application to Reduce Risk of Stroke; ANZCTR Trial Registration Number ACTRN12616000376448p).
Preliminary results indicate the feasibility of recruitment and acceptability of the intervention by participants. Pilot findings showed that those randomised to the intervention group used the app at least one, but up to six, times in 3 months. The participants also provided positive feedback on the trial experience. For example; “That is awesome, to have an app do that. I am really concerned about my health and want to do something about it, just need a motivation”; “My mum had a stroke. I know how it affects everyone. I want to live healthier for my family and my children”; “I have a partner who has had a stroke. I wasn't with him at the time but I want to understand it more and why it happens”; “I want to be a good role model for my kids. I want to show them how to live healthy and eat healthy.” These quotes highlight the desire for people in the community to know more about stroke and take action for better health, and also the need for a tool that will allow them to do so, thus proving the motivational value of the app. The trial is expected to be completed by mid-2017.
With more than 300 collaborators in over 100 countries, the RIBURST study is one of the largest international epidemiological studies of stroke, myocardial infarction, dementia and type 2 diabetes mellitus in the world. The app has the potential to save millions of lives around the world, by being translated into the world's most spoken languages (covering over 90% of the world population), motivating and empowering people to reduce their risk of not only stroke but also other major NCDs that share common risk factors with stroke, such as ischaemic heart disease, dementia and diabetes mellitus. It was suggested that improving CVD health by improving control of CVD risk factors will also reduce the burden of cancer and other chronic disease.75 Such a motivational population-wide strategy could open a new page in primary prevention of not only stroke/CVD but also other NCDs worldwide.
In 2011, the WHO stated “The use of mobile and wireless technologies to support the achievement of health objectives (mHealth) has the potential to transform the face of health service delivery across the globe.”76 In the most recent paper on digital health for cardiovascular medicine published in JAMA Cardiology,77 Turakhia et al wrote: “Digital health is still in beta testing. However, its future is bright.” We cannot agree more!