Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The counting Stroop: a cognitive interference task

Abstract

The counting Stroop is a validated Stroop task variant. Initially designed as a functional magnetic resonance imaging (fMRI) task for identifying brain regions subserving cognition and attention (dorsal anterior midcingulate cortex (daMCC) and dorsolateral prefrontal cortex (DLPFC)), it has been used to study cognition in healthy volunteers and to identify functional brain abnormalities in neuropsychiatric disorders, such as attention deficit hyperactivity disorder (ADHD). During the counting Stroop, subjects report by button-press the number of words (one to four) appearing on the screen, regardless of word meaning. Neutral-word control trials contain single semantic category common animals (e.g., 'dog' written three times), while interference trials contain number words that are incongruent with the correct response (e.g., 'two' written four times). The counting Stroop can be completed in approximately 20 min per subject and can be used offline (behavioral performance) or with fMRI, positron emission tomography, event-related potentials, magnetoencephalography or intracranial recordings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Counting Stroop trial examples.

Similar content being viewed by others

References

  1. Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).

    Article  Google Scholar 

  2. MacLeod, C.M. Half a century of research on the Stroop effect: an integrative review. Psychol. Bull. 109, 163–203 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Bench, C.J. et al. Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia 31, 907–922 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Carter, C.S., Mintun, M. & Cohen, J.D. Interference and facilitation effects during selective attention: an H215O PET study of Stroop task performance. Neuroimage 2, 264–272 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. George, M.S. et al. Regional brain activity when selecting a response despite interference: an H215O PET study of the Stroop and an emotional Stroop. Hum. Brain Mapp. 1, 194–209 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Pardo, J.V., Pardo, P.J., Janer, K.W. & Raichle, M.E. The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc. Natl. Acad. Sci. USA 87, 256–259 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bush, G. et al. The counting Stroop: an interference task specialized for functional neuroimaging–validation study with functional MRI. Hum. Brain Mapp. 6, 270–282 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bush, G. et al. Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the counting Stroop. Biol. Psychiatry 45, 1542–1552 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Bush, G., Luu, P. & Posner, M.I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Bush, G., Shin, L.M., Holmes, J., Rosen, B.R. & Vogt, B.A. The multi-source interference task: validation study with fMRI in individual subjects. Mol. Psychiatry 8, 60–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Bush, G. et al. Dorsal anterior cingulate cortex: A role in reward-based decision making. Proc. Natl. Acad. Sci. USA 99, 523–528 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Bantick, S.J. et al. Imaging how attention modulates pain in humans using functional MRI. Brain 125, 310–319 (2002).

    Article  PubMed  Google Scholar 

  13. Chen, J.Y. Stroop interference is the result of comparable, not of differential processing speeds of two stimulus dimensions. Percept. Mot. Skills 87, 375–380 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Hayward, G., Goodwin, G.M. & Harmer, C.J. The role of the anterior cingulate cortex in the counting Stroop task. Exp. Brain Res. 154, 355–358 (2004).

    Article  PubMed  Google Scholar 

  15. Kemmotsu, N., Villalobos, M.E., Gaffrey, M.S., Courchesne, E. & Muller, R.A. Activity and functional connectivity of inferior frontal cortex associated with response conflict. Brain Res. Cogn. Brain Res. 24, 335–342 (2005).

    Article  PubMed  Google Scholar 

  16. Mathews, V.P. et al. Media violence exposure and frontal lobe activation measured by functional magnetic resonance imaging in aggressive and nonaggressive adolescents. J. Comput. Assist. Tomogr. 29, 287–292 (2005).

    Article  PubMed  Google Scholar 

  17. Matthews, S.C., Paulus, M.P., Simmons, A.N., Nelesen, R.A. & Dimsdale, J.E. Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function. Neuroimage 22, 1151–1156 (2004).

    Article  PubMed  Google Scholar 

  18. Pavese, A. & Umilta, C. Symbolic distance between numerosity and identity modulates Stroop interference. J. Exp. Psychol. Hum. Percept. Perform. 24, 1535–1545 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. West, R., Jakubek, K., Wymbs, N., Perry, M. & Moore, K. Neural correlates of conflict processing. Exp. Brain Res. 167, 38–48 (2005).

    Article  PubMed  Google Scholar 

  20. Levesque, J., Beauregard, M. & Mensour, B. Effect of neurofeedback training on the neural substrates of selective attention in children with attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study. Neurosci. Lett. 394, 216–221 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Tamm, L., Menon, V., Johnston, C.K., Hessl, D.R. & Reiss, A.L. fMRI study of cognitive interference processing in females with fragile X syndrome. J. Cogn. Neurosci. 14, 160–171 (2002).

    Article  PubMed  Google Scholar 

  22. Parry, A.M., Scott, R.B., Palace, J., Smith, S. & Matthews, P.M. Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine. Brain 126, 2750–2760 (2003).

    Article  PubMed  Google Scholar 

  23. Strakowski, S.M. et al. Abnormal FMRI brain activation in euthymic bipolar disorder patients during a counting Stroop interference task. Am. J. Psychiatry 162, 1697–1705 (2005).

    Article  PubMed  Google Scholar 

  24. Davis, K.D. et al. Human anterior cingulate cortex neurons encode cognitive and emotional demands. J. Neurosci. 25, 8402–8406 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salthouse, T.A. & Meinz, E.J. Aging, inhibition, working memory, and speed. J. Gerontol. B Psychol. Sci. Soc. Sci. 50, P297–P306 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Bush, G. & Shin, L.M. The multi-source interference task: an fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network in individual subjects. Nat. Protocols, published online 22 June 2006 (doi:10.1038/nprot.2006.48).

    Article  PubMed  Google Scholar 

  27. Whalen, P.J. et al. The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division. Biol. Psychiatry 44, 1219–1228 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Whalen, P.J., Bush, G., Shin, L.M. & Rauch, S.L. The emotional counting Stroop: a task for assessing emotional interference during brain imaging. Nat. Protoc., published online 22 June 2006 (doi:10.1038/nprot.2006.45).

    Article  PubMed  Google Scholar 

  29. Oldfield, R.C. The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsycholgia 9, 97–113 (1971).

    Article  CAS  Google Scholar 

  30. Simon, J.R. & Berbaum, K. Effect of conflicting cues on information processing: the 'Stroop effect' vs. the 'Simon Effect'. Acta Psychol. (Amst.) 73, 159–170 (1990).

    Article  CAS  Google Scholar 

  31. Burock, M.A., Buckner, R.L., Woldorff, M.G., Rosen, B.R. & Dale, A.M. Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport 9, 3735–3739 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the Clinical Investigator Training Program of the Harvard/ MIT Division of Health Sciences and Technology-Beth Israel Deaconess Medical Center, in collaboration with Pfizer, Inc. (G.B.) and grant MH-01215 from the US National Institutes of Mental Health (S.L.R.).

Author information

Authors and Affiliations

Authors

Contributions

Initial task design was by G.B. All authors contributed to task refinement, validation testing and manuscript preparation.

Corresponding author

Correspondence to George Bush.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bush, G., Whalen, P., Shin, L. et al. The counting Stroop: a cognitive interference task. Nat Protoc 1, 230–233 (2006). https://doi.org/10.1038/nprot.2006.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.35

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing