Supplement 5. Study quality and risk of bias assessment

No.	Study (year)	Exte	ernal val	idity		Inter	nal valid	lity				11 ^b	
110.		1	2	3	4	5	6	7	8	9	10		
1	Hepner et al. (2002)[61]	1	1	1	1	0	0	1	0	0	0	5	Moderate
2	Pinn & Pallett (2002)[62]	1	1	1	1	0	1	1	0	0	0	6	Moderate
3	Nordeng & Havnen (2004)[63]	1	1	1	0	0	0	1	0	0	0	4	Moderate
4	Forster et al. (2006)[64]	1	1	1	0	0	0	0	0	0	1	4	Moderate
5	Chuang et al. (2007)[165]	0	0	0	0	0	0	1	0	1	0	2	Low
6	Sawalha (2007)[65]	1	1	1	1	0	0	0	0	0	1	5	Moderate
7	Ologe et al., (2008)[66]	1	1	1	1	0	1	0	0	0	0	5	Moderate
8	Rahman et al., (2008)[67]	1	1	0	1	0	0	0	0	1	0	4	Moderate
9	Chuang et al., (2009)[68]	0	0	0	0	0	0	1	0	1	0	2	Low
10	Fakeye et al., (2009)[69]	1	1	1	0	0	0	0	1	0	0	4	Moderate
11	Holst et al. (2009)[70]	1	1	1	1	0	0	0	0	0	0	4	Moderate
12	Rahman et al. (2009)[71]	1	1	0	1	0	0	1	0	1	0	5	Moderate
13	Bercaw et al. (2010)[72]	1	1	1	1	0	0	1	0	0	0	5	Moderate
14	Cuzzolin et al. (2010)[73]	1	1	1	0	0	0	0	0	0	0	3	Low
15	Lapi et al. (2010)[74]	1	1	1	0	0	0	0	0	0	0	3	Low
16	Nordeng et al. (2010)[75]	1	0	1	1	0	1	1	0	1	0	6	Moderate
17	Pereira et al. (2010)[76]	1	1	1	0	0	1	0	0	0	1	5	Moderate
18	Bello et al. (2011)[77]	1	1	1	1	0	1	1	0	0	0	6	Moderate
19	Kalder et al. (2011)[78]	1	1	1	1	0	1	0	0	0	0	5	Moderate

Supplemental material

No.	Study (year)	Exte	rnal val	idity		Inter	nal valid	lity				11 ^b	
110.		1	2	3	4	5	6	7	8	9	10	_ ''	
40	Zaki & Albarraq (2014)[94]	1	1	1	1	0	1	0	1	0	0	6	Moderate
41	Adusi-Poku et al. (2015)[95]	1	1	0	0	0	0	1	1	0	0	4	Moderate
42	Afshary et al. (2015)[96]	1	0	0	1	0	1	0	0	0	1	4	Moderate
43	Ali-Shtayeh et al. (2015)[97]	1	1	0	0	0	1	0	0	1	0	4	Moderate
44	Bello & Isah (2015)[98]	1	1	0	0	0	1	0	1	0	0	4	Moderate
45	Elberry et al. (2015)[99]	1	1	1	0	0	1	1	0	0	1	6	Moderate
46	Mugomeri et al. (2015)[100]	1	1	1	1	0	1	0	1	0	0	6	Moderate
47	Nergard et al. (2015)[101]	1	1	1	0	0	0	1	0	1	1	6	Moderate
48	Pallivalapila et al. (2015)[102]	1	1	1	0	0	0	0	0	0	0	3	Low
49	Budzynska et al. (2016)[169]	1	1	1	0	0	1	1	0	0	1	6	Moderate
50	de Araujo et al. (2016)[53]	1	1	1	1	0	1	1	1	0	1	8	High
51	Elkhoudri et al. (2016)[54]	1	1	1	1	0	0	1	0	1	1	7	High
52	Hanafy et al. (2016)[103]	1	1	1	1	0	1	0	0	0	0	5	Moderate
53	Hwang et al. (2016)[104]	1	1	1	0	0	1	0	0	0	1	5	Moderate
54	Laelago et al. (2016)[105]	1	1	1	1	0	1	0	0	0	0	5	Moderate
55	Mbarambara et al. (2016)[106]	1	0	0	1	0	1	1	0	0	0	4	Moderate
56	Tang et al. (2016)[170]	1	1	1	0	0	0	0	0	0	0	3	Low
57	Varghese et al. (2016)[107]	1	1	1	1	0	1	1	0	0	0	6	Moderate
58	Yusof et al. (2016)[108]	1	1	1	1	0	1	0	1	0	0	6	Moderate
59	Al-Ghamdi et al. (2017)[109]	1	1	1	0	0	1	0	0	1	1	6	Moderate

No.	Study (year)	Exte	rnal vali	idity		Inter	nal valid	ity	Internal validity							
110.		1	2	3	4	5	6	7	8	9	10	_ 11 ^b				
60	Alsubaie et al. (2017)[110]	1	1	0	1	0	1	0	0	1	1	6	Moderate			
61	Barisic et al. (2017)[111]	1	1	1	1	0	1	1	0	0	0	6	Moderate			
62	Cabut et al. (2017)[112]	1	1	1	1	0	1	1	0	0	0	6	Moderate			
63	Kissal et al. (2017)[113]	1	1	1	1	0	1	1	0	0	0	6	Moderate			
64	Koc et al. (2017)[114]	1	1	1	1	0	1	0	0	0	0	5	Moderate			
65	Mekuria et al. (2017)[115]	1	1	0	0	0	1	0	0	0	0	3	Low			
66	Onyiapat et al. (2017)[116]	1	1	0	0	0	1	1	0	0	1	5	Moderate			
67	Ahmed et al. (2018)[117]	1	1	1	0	0	0	0	0	0	0	3	Low			
68	Alonso-Castro et al. (2018)[118]	1	1	1	1	0	1	0	0	1	0	6	Moderate			
69	Ameade et al. (2018)[119]	1	0	1	1	0	1	1	1	0	0	6	Moderate			
70	Beyene & Beza (2018)[162]	1	0	0	0	0	1	0	0	0	1	3	Low			
71	Botyar et al. (2018)[120]	1	1	0	1	0	0	1	0	1	0	5	Moderate			
72	Jambo et al. (2018)[121]	1	1	1	0	0	1	0	0	0	0	4	Moderate			
73	James et al. (2018)[122]	1	1	1	0	0	1	0	0	0	0	4	Moderate			
74	Marwa et al. (2018)[123]	1	1	0	0	0	1	0	0	0	0	3	Low			
75	Rafiee et al. (2018)[124]	1	1	1	1	0	1	0	0	0	0	5	Moderate			
76	Tahery et al. (2018)[125]	1	1	0	1	0	1	0	0	0	1	5	Moderate			
77	Abdollahi & Yazdani (2019)[126]	1	1	1	1	0	0	0	0	0	1	5	Moderate			
78	Al Essa et al. (2019)[127]	1	1	1	1	0	1	0	0	0	0	5	Moderate			
79	Biazar et al. (2019)[128]	1	1	1	1	0	0	0	0	0	1	5	Moderate			

No.	Study (year)	Exte		Inter	nal valid	ity				11 ^b			
110.		1	2	3	4	5	6	7	8	9	10	_ ''	
80	Nega et al. (2019)[129]	1	1	1	0	0	0	0	0	0	1	4	Moderate
81	Saber et al. (2019)[130]	1	1	0	1	0	1	1	0	0	1	6	Moderate
82	Yazdi et al. (2019)[131]	1	1	1	1	0	1	0	0	0	0	5	Moderate
83	Zaitoun et al. (2019)[55]	1	1	1	1	0	0	1	0	1	1	7	High
84	Ahmed et al. (2020a)[27]	1	1	1	0	0	1	0	0	0	0	4	Moderate
85	Ahmed et al. (2020b)[132]	1	1	1	0	0	1	0	0	0	1	5	Moderate
86	Aljofan & Alkhamaiseh (2020)[56]	1	1	1	1	0	1	0	1	1	0	7	High
87	El Hajj et al. (2020)[133]	1	1	1	0	0	0	0	0	0	0	3	Low
88	Gbagbo & Nkrumah (2020)[163]	1	0	1	1	0	1	0	0	0	0	4	Moderate
89	Kekana & Sebitloane (2020)[134]	1	1	1	1	0	1	1	0	0	0	6	Moderate
90	Obadeji et al. (2020)[135]	1	1	1	1	0	1	1	0	0	0	6	Moderate
91	Pakseresht et al. (2020)[136]	1	1	1	1	0	1	0	0	0	1	6	Moderate
92	Sema et al. (2020)[137]	1	1	0	0	0	0	0	0	0	0	2	Low
93	Tuha et al. (2020)[138]	1	1	0	1	0	0	0	0	0	0	3	Low
94	Adama et al. (2021)[139]	1	1	0	1	0	1	0	0	0	0	4	Moderate
95	Addis et al. (2021)[164]	1	0	0	0	0	1	0	0	0	0	2	Low
96	Ake et al. (2021)[140]	1	0	0	1	0	1	0	0	0	0	3	Low
97	Almoayad et al. (2021)[57]	1	1	1	1	0	1	0	0	1	1	7	High
98	Alsous et al. (2021)[141]	1	1	1	0	0	1	0	0	0	0	4	Moderate
99	Ayhan & Akalin (2021)[142]	1	1	1	1	0	0	1	0	1	0	6	Moderate

No.	Study (year)	Exte	rnal val	idity		Inter	nal valid	ity				11 ^b	
110.		1	2	3	4	5	6	7	8	9	10	_ ''	
100	Babatunde et al. (2021)[143]	1	0	0	0	0	1	0	0	0	0	2	Low
101	Bekele & Gonfa (2021)[144]	1	0	0	0	0	1	0	0	0	0	2	Low
102	da Matta et al. (2021)[145]	1	1	1	1	0	1	1	0	0	0	6	Moderate
103	Emiru et al. (2021)[146]	1	1	1	1	0	1	0	0	0	1	6	Moderate
104	Karimian et al. (2021)[147]	1	1	0	0	0	1	0	0	0	0	3	Low
105	Nnaemeka et al. (2021)[58]	1	1	1	1	0	1	1	1	1	0	8	High
106	Quzmar et al. (2021)[148]	1	1	1	0	0	1	0	1	1	0	6	Moderate
107	Umar et al. (2021)[59]	1	1	1	1	0	1	1	1	0	1	8	High
108	Ahmed et al. (2022)[149]	1	1	1	0	0	1	0	0	0	0	4	Moderate
109	Anteneh et al. (2022)[150]	1	1	0	0	0	0	0	0	1	1	4	Moderate
110	Barnes et al. (2022)[151]	1	1	1	1	0	0	0	0	1	0	5	Moderate
111	Bebitoglu et al. (2022)[152]	1	1	1	0	0	1	0	0	0	0	4	Moderate
112	Belayneh et al. (2022)[153]	1	1	1	0	0	1	0	0	0	0	4	Moderate
113	Elba et al. (2022)[154]	1	1	0	1	0	1	1	1	0	0	6	Moderate
114	Jahan et al. (2022)[155]	1	1	0	0	0	0	1	1	0	1	5	Moderate
115	Kahssay et al. (2022)[156]	1	1	0	0	0	0	0	0	0	0	2	Low
116	Kamel et al. (2022)[157]	1	1	1	1	0	0	1	0	0	1	6	Moderate
117	Mohamud (2022)[158]	1	1	0	0	0	1	0	0	0	0	3	Low
118	Saleh et al. (2022)[60]	1	1	1	1	0	1	1	1	0	0	7	High
119	Tesfaye et al. (2022)[159]	1	0	0	0	0	1	0	0	1	0	3	Low

No.	Study (year)	External validity Internal validity								11 ^b			
		1	2	3	4	5	6	7	8	9	10	_	
120	Wake & Fitie (2022)[160]	1	1	0	0	0	0	0	0	0	0	2	Low
121	Isiiko et al. (2023)[161]	1	1	0	1	0	1	0	0	0	0	4	Moderate

^{*}items adapted from Hoy et al.[42]

- 1) Was the study's target population a close representation of the general pregnant women in relation to relevant variables?
- 2) Was the sampling frame a true or close representation of the target population?
- 3) Was some form of random selection used to select the sample, OR was a census undertaken?
- 4) Was the likelihood of nonresponse bias minimal (response rate > 75%)?
- 5) Were data collected directly from the subjects (as opposed to a proxy)?
- 6) Was an acceptable case definition of HM used in the study?
- 7) Was the study instrument that measured the parameter of interest shown to have validity and reliability?
- 8) Was the same mode of data collection used for all subjects?
- 9) Was the length of the shortest prevalence period for the parameter of interest appropriate (survey of currently pregnant or women in perinatal period)?
- 10) Were the numerator(s) and denominator(s) for the parameter of interest (HM use and disclose rate) appropriate?
- 11) Summary of the item on the overall risk of study bias
- ^a 0: low risk of bias; 1: high risk of bias
- ^b 0-3: low risk; 4-6: moderate risk; 7-10: high risk