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ABSTRACT
Introduction Tuberculosis (TB) is a global health 
emergency and low treatment adherence among patients 
is a major barrier to ending the TB epidemic. The WHO 
promotes digital adherence technologies (DATs) as 
facilitators for improving treatment adherence in resource- 
limited settings. However, limited research has investigated 
whether DATs improve outcomes for high- risk patients (ie, 
those with a high probability of an unsuccessful outcome), 
leading to concerns that DATs may cause intervention- 
generated inequality.
Methods We conducted secondary analyses of data from 
a completed individual- level randomised controlled trial 
in Nairobi, Kenya during 2016–2017, which evaluated 
the average intervention effect of a novel DAT- based 
behavioural support programme. We trained a causal 
forest model to answer three research questions: (1) 
Was the effect of the intervention heterogeneous across 
individuals? (2) Was the intervention less effective for 
high- risk patients? nd (3) Can differentiated care improve 
programme effectiveness and equity in treatment 
outcomes?
Results We found that individual intervention effects—
the percentage point reduction in the likelihood of an 
unsuccessful treatment outcome—ranged from 4.2 
to 12.4, with an average of 8.2. The intervention was 
beneficial for 76% of patients, and most beneficial for 
high- risk patients. Differentiated enrolment policies, 
targeted at high- risk patients, have the potential to (1) 
increase the average intervention effect of DAT services 
by up to 28.5% and (2) decrease the population average 
and standard deviation (across patients) of the probability 
of an unsuccessful treatment outcome by up to 8.5% and 
31.5%, respectively.
Conclusion This DAT- based intervention can improve 
outcomes among high- risk patients, reducing inequity 
in the likelihood of an unsuccessful treatment outcome. 
In resource- limited settings where universal provision 
of the intervention is infeasible, targeting high- risk 
patients for DAT enrolment is a worthwhile strategy 
for programmes that involve human support sponsors, 
enabling them to achieve the highest possible impact 
for high- risk patients at a substantially improved cost- 
effectiveness ratio.

INTRODUCTION
Tuberculosis (TB) has been considered a 
global health emergency by the WHO since 
1993, and TB elimination is a key target of 
the United Nations Sustainable Development 
Goals.1 TB remains a global health chal-
lenge with an estimated 1.5 million deaths 
in 2020. Despite the existence of effective 
treatment,2 successful treatment completion 
remains a challenge, and this exacerbates the 
epidemic by accelerating transmission and 
drug resistance.3–5 In most TB programmes, 
a subset of patients may have a particularly 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ The WHO promotes digital adherence technologies 
(DATs) as facilitators for improving tuberculosis 
treatment adherence.

 ⇒ Previous research on DATs has provided mixed 
results and it remains unknown if DATs create in-
tervention generated inequality (IGI) by dispropor-
tionately benefiting patients who already have a low 
probability of an unsuccessful outcome.

WHAT THIS STUDY ADDS
 ⇒ The effect of the DAT on clinical outcomes was high-
ly heterogeneous across patients.

 ⇒ The effects were largest for patients who are at a 
high risk of an unsuccessful treatment outcome.

 ⇒ Differentiated enrolment policies, targeted at 
high- risk patients, can increase the average in-
tervention effect while simultaneously decreasing 
heterogeneity.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ DATs may not create IGI and have the potential to 
reduce inequity in outcomes.

 ⇒ Targeting DATs towards high- risk patients may im-
prove population health outcomes and programme 
efficiency, particularly in settings with limited 
resources.
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high probability of an unsuccessful treatment outcome, 
and therefore, be most in need of treatment adherence 
support (ie, high- risk patients). Achieving equitable 
outcomes—a stated objective of the WHO’s End TB 
Strategy6—requires interventions that have a demon-
strated ability to reduce the probability of an unsuccessful 
treatment outcome in such high- risk patients.

The WHO currently promotes digital adherence tech-
nologies (DATs)—such as feature or smart phone- bases 
strategies, electronic pillboxes or ingestible sensors—as 
possible facilitators for improving TB treatment adher-
ence in resource- limited settings.7–9 However, little 
research has investigated whether DATs are more likely 
to benefit high- risk patients or, alternatively, whether 
these technologies may be ineffective for such patients 
or even create intervention- generated inequality (IGI) 
by disproportionately benefiting patients who already 
have a low probability of an unsuccessful outcome (ie, 
low- risk patients).10 Some researchers have argued that 
technology- based health interventions may dispropor-
tionately benefit low- risk patients and create IGI, because 
such individuals may be more advantaged, and there-
fore, have higher baseline access to these technologies 
(eg, mobile phones) or greater ability to use them.10 On 
the other hand, if a technology disproportionately bene-
fits high- risk patients, such an intervention could help 
achieve more equitable outcomes and improve health 
system efficiency, especially if it is specifically targeted to 
those patients.

Previous research on DATs in high TB burden settings 
has provided mixed results for average intervention 
effects. Furthermore, this literature has, to our knowl-
edge, not examined the heterogeneity of intervention 
effects, the potential of IGI, or the potential of targeted 
enrolment. In high- quality randomised controlled trials 
(RCTs) in Pakistan and Uganda, DATs did not improve 
TB treatment outcomes for the overall patient popula-
tion, which may also suggest these technologies were 
unlikely to have benefited high- risk patients.11 12 In 
India and Vietnam, suboptimal patient engagement 
with a feature phone- based intervention and electronic 
pillboxes raised concerns regarding the accuracy of 
these DATs for identifying nonadherence.13 14 Some of 
the challenges shaping technology nonengagement—
including poor cellphone access or health literacy, stigma 
and frequent travel—may disproportionately affect high- 
risk patients.9 13 14 Indeed, a study conducted in Peru 
found that TB patients with poor cellphone access were 
more likely to have unsuccessful treatment outcomes.15 
In contrast, a study conducted in South Africa found 
that use of an electronic pillbox successfully identified a 
subpopulation of patients who had challenges adhering 
to both drug- resistant TB therapy and HIV therapy.16 In 
the context of these limited and mixed findings, addi-
tional research is urgently needed to understand the 
heterogeneity of DAT- based TB interventions.

In this paper, we use data from a completed RCT17—
which evaluated the average intervention effect of a 

novel DAT behavioural support system on unsuccessful 
treatment outcomes (a composite measure capturing 
death during TB treatment, treatment failure or lost to 
follow- up)—to train a causal random forest model18 to 
answer three research questions related to the equity 
impacts of the intervention. First, was the effect of the 
intervention heterogeneous across individuals? Second, 
was the intervention less effective for high- risk patients? 
Third, can differentiated care improve programme effec-
tiveness and equity in treatment outcomes in settings 
where universal provision of the intervention is not 
possible? We find high variability in the intervention 
effect, with the greatest benefit accruing to high- risk 
patients. Differentiated provision of this DAT- based inter-
vention has the potential to increase the average inter-
vention effect while decreasing unsuccessful treatment 
outcomes in the overall TB patient population. As such, 
our findings have important implications for improving 
treatment outcomes while potentially increasing the 
efficiency of TB care delivery in low- resource, high TB 
burden settings.

METHODS
Study setting
We conducted a secondary analysis of data from a 
completed individual- level RCT that was conducted in 17 
health clinics in Nairobi, Kenya between 2016 and 2017. 
Kenya is listed among the 30 high burden TB states, with 
an estimated overall national TB prevalence of 426 cases 
per 100 000 population in 2016.19 Nairobi is the largest 
city in Kenya with a population of over 4 million. The esti-
mated TB prevalence in urban areas of Kenya is higher 
than the national average, at 760 cases per 100 000 adult 
population. In 2020, Kenya reported a TB treatment 
success rate of 86%.20 Nairobi also had a similar treat-
ment success rate. According to recent estimates, mobile 
phone penetration in Kenya is over 95%.21 22

Intervention design
The intervention, which was compared with the standard 
of care as part of the RCT, has four main components. 
First, patients received an SMS message every day, 
reminding them to take their medication. Second, 
patients were expected to verify their treatment adher-
ence every day, using an unstructured supplementary 
services data (USSD) interface. Third, patients could 
use the USSD interface to access (A) educational infor-
mation about TB and (B) information on their adher-
ence performance compared with other (anonymised) 
patients. These features were selected based on princi-
ples from behavioural science in order to motivate the 
patient’s adherence to treatment.23 Fourth, the patients 
could interact with study team members (former patients 
who successfully completed TB treatment and were 
recruited as support sponsors for the RCT)—trained on 
the aforementioned behavioural science principles—
for support and advice. The interaction with study team 
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members constitutes a limited human resource that 
cannot be provided to all patients at scale, and therefore, 
motivates the need for a differentiated care strategy (ie, 
prioritising high- risk patients for human contact).

The protocol and outcomes of the original trial were 
reported previously: the intervention was estimated 
to reduce the proportion of patients with unsuccessful 
treatment outcomes by approximately two- thirds (see 
summary of RCT data collection and intervention design 
in online supplemental appendix 1).17

Data
The original RCT identified 1882 eligible patients 
(patients of all ages undergoing TB treatment) but 
excluded 693 individuals because 337 did not meet the 
inclusion criteria of (1) being bacteriologically diag-
nosed with TB by smear microscopy, culture or GeneX-
pert, (2) communicating in either Swahili or English 
and (3) having access to a mobile phone; 9 declined to 
participate; and 347 could not be enrolled due to a study 
member not being on site for their medical appointment. 
The remaining 1189 patients were randomised into inter-
vention (N=609) or control (N=580).

The primary trial outcome of the aforementioned 
trial was an unsuccessful treatment outcome, defined as 
a composite of death during TB treatment, treatment 
failure (ie, the patient’s sputum smear or culture was 
positive at month 5 or later), or lost to follow- up (ie, 
the patient interrupted treatment for ≥2 consecutive 
months). A successful treatment outcome was defined as 
either cure (ie, the patient’s sputum smear or culture was 
negative at month 5 or later) or treatment completion 
(ie, finished all prescribed medication).

Aside from the trial outcome and intervention assign-
ment, we obtained data for 20 patient characteristics, 
which make up the independent variables in our anal-
yses. These variables included a mix of demographic, 
physiological and medical history information. Patients 
were excluded from our analysis if they had a confirmed 
misdiagnosis, were transferred out of their clinic, or were 
missing data for any continuous feature. All categorical 
variables with more than one category were encoded 
using binary indicators for each category and missing 
values were encoded as a separate category.

Model
We trained a causal random forest using the grf package 
in R.18 We used 5000 trees and tuned all other hyperpa-
rameters using an internal cross- validation procedure 
(see model details in online supplemental appendix 
1). All other model parameters were set to their default 
values. The primary assumption of a causal random forest 
is unconfoundedness, which requires that, conditional on 
observables, the assignment to the experimental condi-
tions is random. The condition is satisfied, since patients 
were randomly assigned to the treatment and control 
groups. Furthermore, we verified this assumption using a 
propensity score histogram and tested the goodness- of- fit 

using the statistical test proposed by the creators (see 
model details in online supplemental appendix 1).18

We used the causal random forest to obtain out- of- 
sample estimates for four standard quantities of interest. 
First, we estimated the average intervention effect across 
all patients with a corresponding 95% CIs. Second, we 
estimated an individual intervention effect with a corre-
sponding 95% CI for each patient, defined as  τi  . Third 
and fourth, we estimated the probability of an unsuc-
cessful treatment outcome, conditional on the patient’s 
covariates and the intervention group assignment. For 
each patient  i , we define  µ

0
i   and  µ

1
i   as the probability of 

an unsuccessful treatment outcome without intervention 
and with intervention, respectively. Note that the afore-
mentioned quantities can be prospectively predicted 
for individuals based on sociodemographic and medical 
history information obtained through a questionnaire.

Was the effect of the intervention heterogeneous across 
individuals?
We used the estimated individual intervention effects ( τi ) 
and the corresponding 95% CI to determine if the inter-
vention effects were heterogeneous across patients.

Was the intervention less effective for high-risk patients?
We conducted two analyses to address this question. 
First, we created a scatter plot and calculated Pearson 
correlation coefficient between the estimated interven-
tion effect ( τi  and the probability of an unsuccessful 
treatment outcome without intervention ( µ

0
i  . Second, 

we confirm the first analysis using real trial outcomes 
by comparing the proportion of unsuccessful treat-
ment outcomes between patients with a high and low 
estimated probability of an unsuccessful treatment 
outcome without intervention. To do this, we computed 
the median of  µ

0
i   across all patients, denoted by  ̄µ0 , and 

we partitioned the patient population into two groups: 
patients whose  µ

0
i ≥ µ̄0  (high- risk patients) and  µ

0
i < µ̄0  

(low- risk patients). For each group, we computed the 
average intervention effect using the real outcomes from 
the RCT. In other words, we conducted a subgroup anal-
ysis where the two subgroups correspond to high- risk and 
low- risk patients.

Can differentiated care improve programme effectiveness and 
equity in treatment outcomes?
In this context, differentiated care refers to a targeted 
enrolment strategy that prioritises high- risk patients. Prior-
itisation is necessary because the intervention involves a 
human component that cannot be scaled indefinitely. 
We consider a differentiated policy in which individuals 
are enrolled according to their predicted probability of 
an unsuccessful treatment without intervention ( µ

0
i   . For 

this counterfactual policy, we ranked patients by their 
estimated  µ

0
i   and enrolled individuals with the largest 

 µ
0
i   ’s. For a given level of enrolment capacity, we assess 

effectiveness (equity) by comparing the average (SD) of 
the individual intervention effects between differentiated 
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enrolment and non- differentiated enrolment (ie, enrol-
ment at random). For illustration, we first explored the 
impact of differentiated enrolment, assuming that the 
enrolment capacity is the same as in the RCT (ie, approx-
imately half of the patient population). Second, we varied 
the enrolment capacity (captured by the proportion of 
patients enrolled) from 0 to 1, in increments of 0.1.

RESULTS
Data summary
A total of 1046 individuals were included in our analysis 
dataset. Table 1 provides a summary of all data used in our 
analyses, except for the categorical feature representing the 

TB clinic. Ultimately, 61 patients (12.4%) in the control 
group and 24 patients (4.6%) in the intervention group 
experienced an unsuccessful treatment outcome.

The average intervention effect was positive
The average intervention effect was estimated to be 7.95 
(95% CI 4.6 to 11.4), implying that, on average, the proba-
bility of an unsuccessful treatment outcome for an individual 
in the intervention group was approximately 0.08 less than 
an individual in the control group. The estimated average 
intervention effect is consistent with the results obtained 
using logistic regression in a prior analysis.17

Table 1 Patient characteristics stratified by the control group, the intervention/treatment group and total

Characteristic All Control Intervention

Age, yr. (mean±SD) 31.5±11.9 32.3±12.7 30.8±11.1

Height, m (mean±SD) 1.6±0.2 1.6±0.2 1.6±0.2

Weight, kg (mean±SD) 54.3±15.6 53.4±15.8 55.1±15.4

Household size (mean±SD) 2.0±1.7 2.1±1.8 2.0±1.7

Travel time to clinic, min (mean±SD) 28.1±24.5 28.3±25.3 28.0±23.7

Female sex (%) 41.5 43.0 40.0

Swahili language (%) 35.3 39.8 31.1

HIV positive (%) 29.1 31.6 26.8

X- ray conducted (%) 39.6 41.2 38.1

Antiretroviral therapy (%) 26.9 29.0 24.9

Nutrition support (%) 91.5 92.7 90.3

Co- trimoxazole preventive therapy (%) 28.3 30.0 26.8

Extrapulmonary TB (%) 23.9 23.5 24.3

Slum dweller (%) 42.3 45.2 39.5

Previously sought treatment (%) 67.4 66.3 68.3

Unsuccessful treatment outcome (%) 8.3 12.4 4.6

Bacteriologically confirmed

  Yes (%) 54.5 52.5 56.4

  No (%) 37.5 40.0 35.1

  Undetermined (%) 8.0 7.5 8.5

Education level

  None (%) 14.5 17.4 11.8

  Primary school (%) 32.2 34.4 30.0

  Secondary school (%) 38.8 35.7 41.7

  Advanced degree (%) 14.5 12.4 16.5

Employment status

  Unemployed (%) 22.9 24.3 21.6

  Single job (%) 19.7 18.3 21.1

  Casual day work (%) 27.3 30.0 24.7

  Self- employed (%) 24.6 22.5 26.6

  Student (%) 5.0 4.3 5.7

  Multiple jobs (%) 0.5 0.6 0.4

Note that the features representing the intervention group and the clinic site location are not included in the table.
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The intervention effect was heterogeneous across individuals
Figure 1A displays a histogram of the individual inter-
vention effects,  τi , which ranged from 4.2 to 12.4 with an 
average of 8.2. Figure 1B displays the sorted individual 
intervention effects with a corresponding 95% CI. The 
average interval width was 13.0 and the solid line corre-
sponds to  τi = 0  (ie, an intervention effect of zero). If a 
patient’s 95% CI intersects the solid line, then we cannot 
conclude that the intervention effect for that patient is 
statistically different from zero; 247 patients (24%) had a 
statistically insignificant intervention effect.

The intervention helped those who needed it most
Figure 2A displays a scatter plot of the estimated inter-
vention effect ( τi  and the probability of an unsuccessful 
treatment outcome without intervention ( µ

0
i   where 

patients are stratified according to their RCT group 
assignment. The strong positive relationship (Pearson 

correlation coefficient of 0.856 (95% CI: 0.839 to 0.871)) 
indicates that the treatment effect was largest for patients 
whose probability of an unsuccessful treatment outcome 
without intervention was high. Figure 2B displays histo-
grams for the probability of an unsuccessful treatment 
outcome for the RCT group assignments; intervention 
in dark blue and control in orange. Under the counter-
factual with no enrolment, the average estimated proba-
bility of an unsuccessful treatment outcome was 0.127 for 
the population. For comparison, the average probability 
of an unsuccessful treatment outcome was 0.128 for the 
control group (n=505) and 0.044 for the intervention 
group (n=541) in the RCT, corresponding to a popula-
tion average of 0.085.

Figure 2C displays the proportion of unsuccessful treat-
ment outcomes in the control and intervention groups for 
high- risk and low- risk patients. The average intervention 

Figure 1 Causal forest estimates for (A) individual intervention effects and the average intervention effect (dashed line) and 
(B) the sorted individual intervention effects with 95% CIs.

Figure 2 (A) displays a scatter plot of the estimated intervention effect and the probability of an unsuccessful treatment 
outcome without intervention with patients stratified according to their intervention group. (B) displays histograms for the 
probability of an unsuccessful treatment outcome conditional on the group assignment. (C) displays the proportion of 
unsuccessful treatment outcomes for the control and treatment group separated by high- risk and low- risk patients. The error 
bars represent the 95% CI and the numbers above the bars indicate the size of each group. The averages displayed on the x- 
axis denote the average predicted probability of an unsuccessful treatment outcome without intervention for each group.
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effect in the RCT was 10.9 (95% CI 5.8 to 16.0) and 5.4 
(95% CI 1.0 to 9.8) for high- risk and low- risk patients, 
respectively. For patients in the control group, we find 
that the proportion of unsuccessful treatment outcomes 
was significantly higher for high- risk patients (0.157) 
as compared with low- risk patients (0.095) (differ-
ence=0.0654, p<0.001). For individuals in the interven-
tion groups, the proportion of unsuccessful treatment 
outcomes was 0.041 and 0.048 (difference=0.007, p=0.69) 
for low- risk and high- risk patients, respectively.

Differentiated care reduces the mean and variation in 
unsuccessful treatment outcomes
Figure 3A displays histograms for the probability of an 
unsuccessful treatment outcome of the entire population 
(enrolled and non- enrolled) using differentiated (in 
blue) and non- differentiated (ie, enrolment at random, 
in orange) enrolment strategies, assuming the same 
enrolment capacity as the RCT. The average (SD) of the 
probability of an unsuccessful treatment outcome was 
0.078 (0.034) and 0.085 (0.044) for differentiated and 
non- differentiated strategies, respectively. The average 
intervention effect for enrolled patients was 9.6 for the 
differentiated strategy, as compared with 8.1 for the non- 
differentiated strategy. Figure 3A provides a visual illus-
tration of the drivers for the improved outcomes of the 
differentiated strategies, highlighting that the differen-
tiated enrolment strategy focuses on enrolling patients 
with very high likelihoods of unsuccessful outcomes in 
the absence of intervention.

Figure 3B displays the estimated proportion of unsuc-
cessful treatment outcomes and the corresponding inter-
vention effect (for enrolled patients) under differentiated 
and non- differentiated enrolment strategies with varying 
capacity. Differentiated enrolment strategies, targeted 
at high- risk patients increased the average interven-
tion effect of DAT services by up to 28.5% (comparing 
the solid and dashed blue curves in figure 3B) while 
decreasing the population average and SD of the prob-
ability of an unsuccessful treatment outcome by up to 
8.5% and 31.5%, respectively. Figure 3B highlights that 
the relative benefits of differentiated enrolment are 
highest when the enrolment capacity is the lowest.

DISCUSSION
This study presents the first estimates of heterogeneity 
in the intervention effects of DAT support for treat-
ment adherence among TB patients. Using data from a 
completed RCT, we confirm that the intervention effects 
are highly heterogeneous but also demonstrate that, 
in the case of this specific DAT- based intervention, the 
highest intervention effects are for high- risk patients, 
who had a high probability of an unsuccessful treatment 
outcome in the absence of adherence support. Specifi-
cally, we find that the estimated individual intervention 
effects range from 4.2 to 12.4, in terms of the percentage 
point reduction in the probability of an unsuccessful 
treatment outcome. Although the individual intervention 
effect is not statistically different from 0 for one- quarter 
of patients, for the overall population we find that the 
estimated individual intervention effects are strongly 
correlated with the probability of an unsuccessful treat-
ment outcome in the absence of adherence support (our 
definition of high- risk patients). We confirm this result by 
stratifying the outcomes of the RCT, demonstrating that 
the average intervention effect for high- risk patients was 
significantly higher than for other (ie, low- risk) patients.

The potential impacts of technology- based interven-
tions on health inequality has been a growing concern 
in the public health literature.10 24 25 Disadvantaged indi-
viduals may experience greater challenges with access to, 
adoption of or engagement with technology- based inter-
ventions.10 26 For the specific DAT- based intervention we 
evaluated, we find the opposite effect—the intervention 
disproportionately benefited disadvantaged, or high- risk, 
patients.

It is beyond the scope of our study to evaluate which 
component of Keheala’s intervention (ie, the reminders, 
the verification requirement, the educational informa-
tion or the sponsor interaction) is driving the improved 
outcomes for high- risk patients, as the trial was designed 
to evaluate the overall impact of the suite of interven-
tions.27 However, a potential explanation for why this DAT 
intervention performed better than others evaluated by 
RCTs in high TB burden settings,11 12 is the involvement 
of trained support sponsors who can assist patients with 

Figure 3 (A) Displays histograms for the probability of an unsuccessful treatment outcome of the entire population (enrolled 
and non- enrolled) using differentiated (blue) and non- differentiated (orange) enrolment. (B) Displays the estimated proportion of 
unsuccessful treatment outcomes and the corresponding intervention effect for enrolled patients under differentiated and non- 
differentiated enrolment policies with varying capacity. There are 95% CIs around each point.
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common adherence issues. The fact that recruiting and 
training support sponsors is the most resource inten-
sive aspect of the intervention motivates our analysis to 
understand the potential benefits of differentiated care.

In addition to allowing DAT services to reach high- 
risk patients, differentiated enrolment can significantly 
impact the cost- effectiveness of such programmes. Since 
the DAT intervention we study had the highest impact 
on high- risk patients, the population- level impact of a 
scaled up intervention would be significantly higher with 
personalised enrolment than with uniform enrolment. 
Using the population of the RCT, our results demon-
strate that personalising enrolment could increase the 
average intervention effect of the programme by up to 
28.5% with no change in the number of enrolled patients 
and therefore no additional cost. These counterfactuals 
demonstrate that personalising treatment adherence 
support services by differentiating enrolment is not only 
important for high- risk patients but also policy makers 
who must prioritise cost- effective services given limited 
resources. In addition, the benefits of differentiated 
enrolment are highest in situations where the enrolment 
capacity is highly constrained, as might be the case for 
most countries with a high TB incidence.

Indeed, prior literature has called for increased person-
alisation in TB care, highlighting that technological 
advances may allow for the tailoring of treatment regi-
mens to patients’ needs.28 Similarly, the highly variable 
risk estimates among patients with latent TB have been 
used to argue for differentiated and personalised strat-
egies for initiating patients on preventive treatment.29 
However, despite poor treatment adherence being a 
well- known barrier to improving TB care and despite 
this barrier being the focus of much research, little effort 
has been devoted to personalising treatment adherence 
support or incorporating differentiated care into DAT 
systems.9 30 Understanding individual intervention effects 
and using differentiated enrolment strategies is a first 
step towards shifting the current TB treatment adher-
ence paradigm from observational (ie, monitoring and 
collecting data on patient adherence) to actionable (ie, 
combining behavioural data with analytics to improve 
patient adherence in a personalised manner).

Our study has at least two limitations. First, our results 
may not provide a complete picture of how this DAT- 
based intervention might impact treatment outcome 
equity across the broader TB patient population in Kenya 
or other high burden settings. For example, although 
mobile phone access is reported to be very high in Kenya 
and increasing in many other high TB burden countries, 
barriers to effective mobile phone access may still pose 
challenges in these settings. Similarly, for the purposes of 
our study, the term high risk has a precise definition and 
refers to the subset of the enrolled patient population who 
have a higher than median probability of a bad outcome 
in the absence of intervention. Therefore, our results 
should not be extrapolated to apply to patients who are 
underserved or at high risk for other reasons (including 

those patients who were excluded from the original study 
due to not speaking English or Swahili). Second, our find-
ings may not be generalisable to other DATs, as Keheala 
is one of the few DAT- based interventions that has been 
shown to improve TB treatment outcomes via an RCT in a 
high TB burden country. However, the fact that Keheala’s 
average intervention effect has already been established 
motivates a closer look at the individual intervention 
effects studied in this paper. A broader implication of 
this paper is that following an RCT evaluating treatment 
adherence services, the appropriate course of action is to 
quantify individual intervention effects in addition to the 
standard average effects. Our results demonstrate that 
such analysis can inform the future scale- up of successful 
support programmes and policy makers should be aware 
of individual effects when deciding which DATs to adopt 
at scale.

More broadly, our results motivate a discussion of the 
scientific and ethical implications of using algorithms to 
preselect patients for higher intensity of intervention. 
From a scientific perspective, external validation of such 
algorithms is crucial, particularly if they are applied to a 
broader or different population from that used during 
training. From an ethical perspective, many would argue 
that if an intervention works, it should be offered to all 
patients. On the other hand, offering the intervention to 
all patients (including those with low risk of unsuccessful 
outcomes) will significantly increase its costs and thereby 
affect its cost- effectiveness. If machine learning- based 
preselection models can be shown to be accurate, they 
may enable policy makers to offer high impact services to 
the specific population that needs them the most.

CONCLUSION
In conclusion, we evaluated individual intervention 
effects of a DAT- based support system using data from a 
completed RCT. We found evidence of heterogeneity in 
intervention effects across patients. The individual inter-
vention effects suggest that the DAT- based support system 
was most effective for high- risk patients, thereby closing 
inequity in treatment outcomes. We also demonstrated 
that differentiated care strategies—that is, targeted 
enrolment in the intervention—can benefit high- risk 
patients and improve overall treatment outcomes in situ-
ations when universal provision of the intervention is not 
possible.
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