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ABSTRACT
Vector control using long-lasting insecticidal nets
(LLINs) and indoor residual spraying (IRS) accounts
for most of the malaria burden reductions achieved
recently in low and middle-income countries (LMICs).
LLINs and IRS are highly effective, but are insufficient
to eliminate malaria transmission in many settings
because of operational constraints, growing resistance
to available insecticides and mosquitoes that
behaviourally avoid contact with these interventions.
However, a number of substantive opportunities now
exist for rapidly developing and implementing more
diverse, effective and sustainable malaria vector control
strategies for LMICs. For example, mosquito control in
high-income countries is predominantly achieved with
a combination of mosquito-proofed housing and
environmental management, supplemented with large-
scale insecticide applications to larval habitats and
outdoor spaces that kill off vector populations en
masse, but all these interventions remain underused in
LMICs. Programmatic development and evaluation of
decentralised, locally managed systems for delivering
these proactive mosquito population abatement
practices in LMICs could therefore enable broader
scale-up. Furthermore, a diverse range of emerging or
repurposed technologies are becoming available for
targeting mosquitoes when they enter houses, feed
outdoors, attack livestock, feed on sugar or aggregate
into mating swarms. Global policy must now be
realigned to mobilise the political and financial support
necessary to exploit these opportunities over the
decade ahead, so that national malaria control and
elimination programmes can access a much broader,
more effective set of vector control interventions.

INTRODUCTION
Vector control with long-lasting insecticidal
nets (LLINs) and indoor residual spraying
(IRS) accounts for an estimated 78% of the
663 million malaria cases averted globally
since 2000.1 Despite these achievements, over
214 million malaria cases and 438 000
malaria-attributable deaths occurred in 2014.2

There are renewed calls for malaria eradica-
tion by 2040 and new bold global targets for
malaria elimination: elimination from four

Key questions

What is already known about this topic?
▸ Vector control in low and middle-income countries

(LMICs), using long-lasting insecticidal nets
(LLINs) and indoor residual spraying (IRS),
accounts for most of the unprecedented malaria
burden reductions achieved in the 21st century.

▸ LLINs and IRS are highly effective in LMICs, but
are insufficient to eliminate malaria transmission
in many settings because of operational con-
straints, mosquitoes that behaviourally avoid
contact with them inside houses and growing
resistance to available insecticides.

▸ However, mosquito control in high-income
countries (HICs) is predominantly achieved with
a combination of long-standing high coverage
with mosquito-proofed housing and environ-
mental management, supplemented with
proactive, large-scale insecticide applications to
larval habitats and outdoor spaces that kill off
vector populations en masse.

▸ In contrast with the prescriptive, centralised global
recommendation of LLINs and IRS as ubiquitous
first-choice vector control tools for LMICs, the
more aggressive, area-wide population suppres-
sion practices of HICs are idiosyncratically tailored
to local conditions by decentralised mosquito
abatement programmes, which are governed,
funded and managed at the local level.

What are the new findings?
▸ A number of existing technologies are available

that remain underdeveloped or underexploited,
which could be rapidly mobilised to enable
implementation of far more diverse, effective
and sustainable malaria vector control strategies
in LMICs.

▸ Where sufficient implementation capacity exists,
and human population density is high enough
to make the cost per person protected afford-
able, systems for vertical, proactive, locally
managed delivery of mosquito population abate-
ment technologies already used extensively in
HICs should be developed and evaluated in
LMICs. Experiences from programmes in HICs
may be selectively leveraged wherever appropri-
ate in LMIC contexts.
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southern African countries by 2020, a malaria-free
Asia-Pacific by 2030,3 reductions in malaria incidence by
90% globally, and elimination in 35 countries by 2030.4

While IRS and LLINs provide the backbone of malaria
control and elimination efforts in low-income and
middle countries (LMICs) today, more aggressive
approaches to vector control will be needed to achieve
these ambitious future goals.5 6 In countries that have
successfully eliminated malaria, including high-income
countries (HICs) such as the USA and Australia,7 8 as well
as lower income countries such as Mauritius, Sri Lanka
and Turkey, mosquito populations were suppressed using
more integrated vector control models, including mul-
tiple measures attacking different stages of the mosquito
life cycle.9–11 To accelerate progress towards elimination,
it is critical to revisit these existing methods, and to add
new and emerging technologies that target different mos-
quito behaviours and life stages, so that low-income
malaria-endemic countries can avail of a much larger
arsenal of effective vector control options.
LLINs and IRS have been highly effective interventions

in LMICs,1 but they have fundamental limitations, includ-
ing (1) their vulnerability to selection for insecticide
resistance,12 13 (2) their reliance on population-wide
human compliance for operational effectiveness,14 15 (3)
considerable cost,2 16–18 and (4) important biological
constraints to their efficacy caused by mosquitoes that
feed on humans and/or animals outdoors, rest outdoors,
or enter houses but then rapidly exit from them without
being exposed to insecticides.5 6 19

Resistance to all four classes of insecticide available for
public health, especially the pyrethroids we rely on for
LLINs, is now prevalent across Africa.12 13 New chemical
insecticides are expected to enter the market over the

next few years, but these may be similarly vulnerable to
selection for physiological resistance if used as single
active ingredients.12 13 Improved deployment formats
are needed to target insecticides more efficiently,20–22 so
that mosaics, rotations or combinations,23 possibly
including biological agents,24 can be affordably applied.
For now, IRS is the only recommended alternative to
LLINS for applying insecticides within houses, and most
available alternatives to pyrethroids are far more expen-
sive, resulting in slow uptake16 and contraction of IRS
coverage wherever they have been adopted.17 As a result
of all these financial and practical limitations, only 31%
of African households have sufficient LLINs25 and
global IRS coverage has shrunk to only 3.4% of the
world’s at-risk population.2

The impacts of LLINs and IRS are also biologically
limited by their reliance on strong vector behavioural
preferences for resting or biting in houses, usually asso-
ciated with frequent feeding on humans.5 6 19 Wherever
vectors exist that feed on animals, rest and/or feed out-
doors, or can enter houses but rapidly exit again,
malaria transmission is likely to persist despite a scale-up
of LLINs and IRS, a phenomenon referred to as residual
transmission (figure 1). In areas with self-sustaining
levels of residual transmission, elimination of malaria
cannot be achieved with LLINs and/or IRS alone, even
if applied at universal coverage against a fully insecticide-
susceptible vector population.5 6 19 26 Reducing malaria
transmission to levels where the rate of reinfection is low
enough to eliminate parasite reservoirs from humans
will require improved protection against human-biting
mosquitoes, as well as more broadly effective population
control of all major vector species, regardless of their
diverse behavioural traits.5 6 19

In this analysis, we outline immediate opportunities
for developing and implementing more aggressive
malaria vector control strategies in LMICs, by leveraging
transferable programmatic experiences from HICs with
existing technologies, as well as exploiting repurposed
and emerging new technologies. Additional new tech-
nologies include autodissemination of larvicides,27

genetic control,28 biological control29 and endectocides
(systemic insecticides that are delivered to the tissues of
target animals through oral, injectable or implant for-
mulations) for humans,30 31 but these are unlikely to be
ready for programmatic assessment19 in <10 years. Here,
we focus selectively on lower hanging fruit that could be
feasibly deployed at scale by national malaria control
programmes within the decade immediately ahead.

Institutionalising robust delivery systems for existing
mosquito population suppression technologies
Mosquito control in HICs has been predominantly
achieved through a combination of mosquito-proofed
housing and environmental management, supplemen-
ted with frequent, large-scale insecticide applications to
larval habitats and outdoor spaces, to kill off vector
populations en masse.7 8 32 33 Some caution is required

Key questions

▸ Furthermore, a diverse range of repurposed and emerging
technologies for targeting mosquitoes when they enter
houses, feed outdoors, attack livestock, feed on sugar or
aggregate into mating swarms are becoming available. These
new technological options could all be developed into pro-
grammatically scalable vector control tools within the decade
ahead and provide unprecedented opportunities for more
effective suppression of malaria transmission in LMICs. Many
of these technologies could be delivered horizontally, making
them practically applicable even in settings with weak imple-
mentation capacity.

Recommendations for policy
▸ Global policy must now fully and consistently realign with

both the programmatic needs and biological realities of
malaria vector control, to prioritise accelerated development of
these diverse options for malaria vector control in LMICs.

▸ Developing such an expanded toolbox for malaria vector
control will require investment in product and system develop-
ment, high-quality evaluations of efficacy and effectiveness,
and operational research to define best practices for program-
matic use of these additional interventions.
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when considering the success of these HIC mosquito
abatement programmes, because they have been con-
ducted in less challenging temperate climates, where
less efficient vectors bite humans too infrequently to
mediate intense malaria transmission.6 Also, many of
their routine operational practices will not be directly
transferable to more financially constrained LMIC con-
texts, the needs of which are epidemiologically and eco-
logically diverse. Nevertheless, these interventions have
been so successful that their malaria elimination func-
tion is often taken for granted, and many of the tech-
nologies or experiences may be relevant to malaria
control and elimination in LMICs.
Many well-established and highly effective mosquito

control technologies that have been applied in HICs for
decades7 8 remain to be widely adopted in LMICs
because the necessary delivery systems and guidance
have yet to be developed.5 Most HIC mosquito control
programmes predominantly rely on large-scale larval
source management (LSM) interventions to prevent the
emergence of adult mosquitoes, complemented by
space spraying of insecticides to tackle adult vector

mosquitoes that do emerge (box 1, figure 1). Delivery of
such proactive vector population control approaches typ-
ically requires vertical but decentralised delivery systems,
managed locally by technical specialists, such as vector
biologists, engineers and planners.7 8 While HIC mos-
quito control programmes are predominantly staffed by
such advanced specialists, such cadres are much
sparser in LMICs, so the institutional structures and
operational processes must be tailored accordingly.9 34

Encouragingly, several examples of active, surveillance-
based, vertically delivered local mosquito control pro-
grammes do exist in LMICs,11 operating at costs that are
comparable with universal coverage of LLINs and
IRS.35–37 Across settings, key features contributing to
effective mosquito control systems include strong govern-
ance, dedicated financing, and decentralised manage-
ment, robust entomological surveillance, and adaptive
design of locally tailored intervention packages.
The LSM and space-spraying interventions these pro-

grammes rely on are both area-wide interventions, so
their application costs depend on the size of the catch-
ment to be treated. Thus, the denser the human

Figure 1 Schematic illustration of malaria vector mosquito life histories, highlighting the most important behaviours that mediate

residual transmission of malaria despite high coverage with long-lasting insecticidal nets and indoor residual spraying,5 19 as well

as the many intervention opportunities that remain to be exploited with existing or emerging vector control methods. This figure

has been updated relative to a previous version,5 to reflect evidence for the inclusion of additional intervention options,

specifically odour-baited traps and targets for killing host-seeking mosquitoes (box 2), as well as targeted space spraying of

mosquitoes (box 1), especially when they aggregate into mating swarms (box 3).
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population, the more cost-efficient these measures
become per person protected. With ongoing population
growth, urbanisation and democratisation, development
of such vertical but decentralised mosquito control pro-
grammes becomes an increasingly viable solution for
many LMICs. Even now, ∼25% of the world’s at-risk popu-
lation already lives at densities of at least 1000 people per
square kilometre, matching the sparsest population
density at which LSM has already proven efficacious in
Africa, albeit in the form of a district-scale research
project rather than a larger programmatic evaluation.38

Adapting and repurposing existing technologies to target
vulnerable behaviours of adult mosquitoes
The remaining 75% of the world’s malaria-prone popu-
lation is probably too sparsely distributed to support spe-
cialist vertical programmes for active mosquito
abatement. Therefore, other technological solutions
requiring less advanced delivery capacity will also be
needed.
Fortunately, a number of existing technologies are

available for targeting adult mosquito blood-feeding

behaviours, which could be readily adapted or repur-
posed for malaria vector control, and conveniently
delivered through existing, non-specialist, horizontal dis-
tribution systems in LMICs (box 2, figure 1). While IRS
and LLINs have been used to great effect1 2 as afford-
able approaches to protecting sleeping and living spaces,
they should ultimately be superseded by mosquito-
proofed housing. However, considerable fractions of
malaria transmission occur outdoors5 or within open
housing designs that lack solid walls, much less a door.
Insecticide-treated clothing or emanators for vapour-
phase insecticides will therefore be needed to extend
protection into the outdoor environment. Also, veterin-
ary insecticides or mosquito traps baited with synthetic
host odours may be used to achieve population suppres-
sion of outdoor-biting mosquito species. Indeed, such
mass population abatement will most likely be essential
to eliminate and prevent the reintroduction of malaria
anywhere that vectors feed often enough on humans to
mediate intense residual malaria transmission but also
often enough on animals to evade population control
with human-targeted interventions alone.6

Beyond the well-understood blood-feeding behaviours
that are most obvious as targets for mosquito control,
other behaviours that are critical to mosquito survival
can be targets for malaria vector control (figure 1 and
box 3). While female mosquitoes need blood from
animals to develop their eggs to maturity, they also feed
on plant sugar sources to maintain their energetic
requirements. Male mosquitoes also feed on sugar, so
both sexes can be targeted with attractive toxic sugar
baits to deplete local vector populations. Aggregation of
male mosquitoes into swarms, to attract and compete for
female mosquitoes, presents another critical mosquito
behaviour that may be targeted with ground-based
insecticide sprays.39

While sugar-feeding and mating behaviours are attract-
ive targets for developing new vector control strategies
(box 3), these behaviours do not directly mediate malaria
transmission so they have received little research atten-
tion and remain poorly understood.40 The full potential
for epidemiological impact and optimal delivery practices
for these strategies remains unclear. Strategic investment
is needed to develop these intervention strategies, as well
as the supporting knowledge base regarding the funda-
mental biology of malaria vector mosquitoes.40

Programmatic, evidence-based development of new vector
control strategies
A range of existing products and promising prototypes
are now available that could be rapidly adapted for
malaria vector control in LMICs (boxes 2 and 3). After
decades of reliance on prescriptive ‘one size fits all’
global policies and pessimism about what is feasible in
LMICs, the time has now come to begin developing the
full diversity of available intervention opportunities. So
how will countries adopt new strategies and technologies
in the absence of definitive epidemiological evidence of

Box 1 Existing vertically delivered mass population sup-
pression technologies that have been underexploited in
low-income and middle-income countries (LMICs)

▸ Larval source management (LSM) to prevent emergence of
adult mosquitoes: The mainstay of most mosquito control pro-
grammes in high-income countries (HICs) is aggressive
control of immature mosquitoes in aquatic habitats through
LSM, which includes all forms of environmental management,
biological control and/or regular larvicide application that
prevent immature aquatic stages of mosquitoes from emerging
as adults.9 10 The WHO currently recommends larviciding as a
supplement to long-lasting insecticidal nets and indoor
residual spraying in LMICs where larval habitats are few, fixed
and findable, a situation for which supporting evidence of
success in LMICs already exists.9 10 However, given the
advances in application technologies (eg, improved aerial and
hand application systems) and emerging technologies for
remotely identifying larval habitats, both driven by HIC
markets over recent decades, LSM interventions may now
become feasible in many LMIC contexts where it would previ-
ously have been considered unrealistic or unaffordable.

▸ Space spraying to kill flying and resting adult mosquitoes:
Ground or aerial delivery of insecticides in the form of fine
sprays, with small droplet sizes that remain suspended in the
air for long periods, can kill mosquitoes which are resting or
flying in the targeted time and place.47 This practice is often
referred to as space spraying or fogging, and is a mainstay of
HIC mosquito control programmes as a response to disease
outbreaks and/or increase in mosquito abundance.7 8

However, it has also been used in some LMIC settings, includ-
ing countries like Turkey, Mauritius and Sri Lanka that have
recently achieved malaria elimination.11 In its first elimination
attempt, Haiti used aerial space spray to control Anopheles
populations and reduce malaria transmission, and ground-
based space spraying has been employed successfully for
malaria vector control in India, Tanzania and El Salvador.47–49
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efficacy, including rigorously controlled phase III efficacy
trials? Fortunately, the historical evidence base (box 4),
and now the WHO policy,19 are both firmly supportive of
a ‘learning-by-doing’ strategy, rather than waiting for the
evidence base to catch up with programmatic needs.
With the exception of the recent LLIN scale-up, the most
successful vector control programmes in history, includ-
ing IRS and LSM for malaria prevention, were established
and developed through programmatic phase IV monitor-
ing, evaluation and operational research, without any pre-
ceding phase III trials (box 4). Such programmatic
evaluations should begin at modest pilot scales, with
rigorous epidemiological and entomological evaluation,
as well as embedded operational research, followed by a
progressive, rational roll-out as the necessary technolo-
gies, systems and supporting evidence mature.5 19

Importantly, none of these exciting new vector control
interventions will provide a universally applicable
panacea; one size will not fit all. Different combinations
of approaches will be needed in different geographies

based on local ecology and vector biology, malaria epi-
demiology and operational capacity. While the need for
national malaria control programmes to record epi-
demiological indicators of impact is obvious, pro-
grammes should also measure simple but robust
indicators of mosquito and human behaviours that
create these intervention opportunities, so that the best
options can be selected, optimised and combined.5 41 42

Emerging opportunities for financing more ambitious
malaria vector control strategies in lower income settings
Ambitions to provide vertical mosquito population
control services already have political support in some
LMICs, to the extent that they finance them from pre-
dominantly domestic sources.9–11 Substantial inter-
national financing mechanisms already exist for
improved housing, pharmaceutical supply and veterinary
extension services in LMICs, all of which could be lever-
aged to support malaria vector control. Furthermore, a
well-developed array of products with established high-

Box 2 Broadening horizontally delivered options for targeting blood-seeking adult mosquitoes

▸ Improving and extending physical protection of houses and peridomestic spaces:50 Permanent housing modifications, such as window
screening, sealed eaves and closed ceilings, can elicit remarkably high user acceptability, uptake and willingness to pay.51 Furthermore, mobile
mosquito-proofed shelters may extend this approach to migrant lifestyles.52 In settings where long-lasting insecticidal nets (LLINs) and/or
indoor residual spraying (IRS) previously performed mosquito population suppression functions,6 insecticide treatments for such screening
materials are readily available.53 54 Furthermore, some remarkably simple modifications to houses can turn them into lethal mosquito traps
with20–22 or without55 insecticide. Critically, even these new formats that do require insecticide need far less active ingredient per household
continuously protected,20–22 so implementation of the Global Plan for Insecticide Resistance Management23 may actually become affordable
in practice.

▸ Extending coverage with solid-phase contact insecticides by treating clothing: Treating even the most basic garments and bed clothes with
contact insecticides has long been known to protect against malaria exposure indoors and outdoors.56 57 However, this approach can be limited
by incomplete body coverage of many clothing practices in tropical climates, as well as restriction to a single pyrethroid insecticide (permethrin)
which is safe enough for direct skin contact. While it might be possible to address the former limitation by supplementing with topical repellents
applied to exposed skin,58 these only provide short-lived protection and require frequent reapplications, so they may be too expensive and imprac-
tical for effective, continuous, indefinite use in many low-income and middle-income country (LMIC) contexts.59 Furthermore, their active ingredi-
ents are often actually irritants rather than repellents in the strict sense,60 so they can exacerbate existing inequities by diverting mosquitoes to
feed on unprotected non-users nearby61 62 and undermine the impact of existing lethal interventions.41 63

▸ Vapour-phase insecticides for protecting open spaces: Devices which emanate vapour from volatile insecticides or repellents into the air are already
widely used in HICs for protection of open spaces where people are usually awake and active.64 65 Encouragingly, one of the most widely used of
these existing vapour-phase insecticides has recently been reformulated into low-technology emanator formats that provide protection lasting
several months, at costs that should be affordable even in LMICs.66–68 While transfluthrin, and several similarly volatile pyrethroids, are often
described as spatial repellents,60 69 they can actually incapacitate65 or even kill mosquitoes.70 They are therefore described here as vapour-phase
insecticides, to distinguish them from repellents and irritants in the strict sense, which may be associated with considerable limitations, disadvan-
tages and risks.41 61–63

▸ Odour-baited traps targeting host-seeking mosquitoes: Recent large-scale epidemiological trials have conclusively demonstrated mass
suppression of the notoriously efficient African vector Anopheles funestus, and dramatically reduced malaria transmission by this widely
distributed mosquito.71 These solar-powered traps are entirely self-sufficient in terms of electrical power and also provide sufficient
surplus to provide household lighting and charge mobile phones. Given these direct benefits at the household level, irrespective of the
impact on mosquitoes or malaria transmission, it may therefore be possible to distribute such traps programmatically through horizontal
delivery mechanisms. Efficacy against a wider diversity of vector species will, however, require the development of affordable sources of
carbon dioxide, or low-bulk substitutes for it.72

▸ Veterinary insecticides to target vectors feeding on livestock: Most malaria vector species prefer animals over humans5 6 and are particu-
larly dependent on cattle as a source of blood.73 A diverse range of advanced veterinary insecticide products exist for treating livestock
animals, many of which could be readily repurposed for population suppression of malaria vectors through existing LMIC agricultural
extension and market subsidy systems.44 74 Targeting insecticide treatments to livestock can achieve the same kind of population sup-
pression of mosquitoes which usually feed on animals,75 in the same way that LLINs and IRS do15 for human-specialised vectors.6 41 76

A particularly attractive aspect of targeting malaria vectors when they attack livestock is that there are already strong markets, subsidies,
delivery systems and market intervention experience with these products in LMICS.77
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value markets exist for personal protection, veterinary
health and construction materials in HICs. Such com-
modities could be exploited to leverage subsidisation or
donation for malaria control in LMICs, in the same way
that curative drugs for several neglected tropical diseases
of humans are procured.43 For example, donations of
short-acting oral formulations of ivermectin are already
used for eliminating onchocerciasis endoparasites from
human populations, but longer lasting veterinary formu-
lations for killing ectoparasites of livestock could also be
used to suppress zoophagic populations of malaria
vectors through agricultural extension systems that
already exist in many LMICs.5 44 Similarly, construction
of mosquito-proofed houses and vertically delivered mos-
quito control are both well-established industries in
HICs, for which creative financing mechanisms to
support application in LMICs could be created.

CONCLUSIONS
Malaria control is at an important historical juncture, as
global progress over recent years is documented1 and
attention turns to the 2030 elimination and 2040 eradica-
tion goals.3 4 Recognising the challenges facing malaria
vector control, including residual transmission, insecticide
resistance and operational constraints to LLINs and IRS
effectiveness, the WHO has acknowledged the need to
overhaul the portfolio of vector control options available
to national malaria control programmes.19 Nevertheless,
the term residual transmission was only formally defined in

2016,26 and the Global Technical Strategy for Malaria up
to 20304 only mentions it in passing, without transparently
acknowledging it as a fundamental, purely biological limi-
tation to the level of impact that can be reasonably
expected of LLINs or IRS.5 6 Global policy now needs to
consistently and unambiguously realign with both the pro-
grammatic needs and biological realities of malaria vector
control, to unambiguously prioritise accelerated develop-
ment of the diverse options available for malaria vector
control in LMICs.
At present, the evidence base relating to these add-

itional vector control options is lacking both in quantity
and quality with respect to their application to preven-
tion of malaria and other mosquito-borne patho-
gens.45 46 Developing such an expanded toolbox for
malaria vector control will require investment in product
and system development, high-quality evaluations of effi-
cacy and effectiveness, and operational research to
define best practices for programmatic use of these
additional interventions.
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